1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Margaret [11]
3 years ago
15

When light passes from a faster medium into a slower medium, which of the following explains what will occur?

Physics
2 answers:
tester [92]3 years ago
7 0

Answer:

It would be B

Explanation:

beks73 [17]3 years ago
5 0

When light passes from a faster medium into a slower medium, light will be refracted toward a line drawn perpendicular to the point of refraction. <em>(B)</em>

You might be interested in
Fossils are generally found inside of what type of rocks?
dusya [7]

Answer:

C sedimentary rocks is the answer.

Explanation:

8 0
3 years ago
Read 2 more answers
Is vectors and motion in plane same?
suter [353]

Answer:

<em>Plane Motion</em>

<em>Plane Motion One of the most common examples of motion in a plane is Projectile motion.</em>

8 0
2 years ago
The boundary between the crust and mantle is marked by a seismic-velocity discontinuity called
Minchanka [31]

The boundary between the crust and mantle is marked by a seismic-velocity discontinuity is called Mohorovicic discontinuity.

Mohorovicic discontinuity was discovered by Andrija Mohorovicic in 1909 who was a Croatian seismologist. He realized that the velocity of a seismic wave is related to the material's density where it is moving through. He decoded that the acceleration of the seismic waves that are observed within outer shell of the earth is a compositional change. Thus, the acceleration should be caused by a material of higher density.

7 0
3 years ago
Read 2 more answers
A green block of mass m slides to the right on a frictionless floor and collides elastically with a red block of mass M which is
Charra [1.4K]

Answer:

M is equal to m

Explanation:

In case we say that the green block's mass m is less than red block's mass M, then the green block would have bounced and moved back to the left instead of coming to rest. The other case where if mass of green block's mass m would have been greater than the red block's mass M, the green block would have kept moving to the right instead of coming to rest. After collision, the red block moves to the right because of exchange of velocities. Therefore, m=M since m comes to rest and M moves to the right

In any collision, as it is asumed that no external forces can act during the collision, momentum must be conserved.

So, if we call p₁ to the momentum before collision, and p₂ to momentum after it, taking into account the information above, we can write the following:

p₁ = mv₁ + M.0 = p₂ = m.0 + Mv₂ ⇒ mv₁ = Mv₂

From the question, we also know that it was an elastic collision.

In elastic collision, added to the momentum conservation, it must be conserved the kinetic energy also.

So, if we call k₁ to the kinetic energy prior the collision, and k₂ to the one after it, we can write the following:

k₁ = 1/2 m(v₁)² + 1/2 M.0 = k₂ = 1/2m.0 + 1/2M(v₂)² ⇒ m(v₁)² = M(v₂)²

Mathematically, the only way in which both equations be true, should be with v₁ = v₂,  which is only possible if m=M too.

In this type of collision, it is said that the energy transfers from one mass to the other.

8 0
3 years ago
A capacitance C and an inductance L are operated at the same angular frequency.
Levart [38]

A) \omega = \frac{1}{\sqrt{LC}}

The magnitude of the capacitive reactance is given by

X_C = \frac{1}{\omega C}

where

\omega is the angular frequency

C is the capacitance

While the magnitude of the inductive capacitance is given by

X_L = \omega L

where L is the inductance.

Since we want the two reactances to be equal, we have

X_C = X_L

So we find

\frac{1}{\omega C}= \omega L\\\omega^2 = \frac{1}{LC}\\\omega = \frac{1}{\sqrt{LC}}

B) 7449 rad/s

In this case, we have

L=5.30 mH = 5.3\cdot 10^{-3}H is the inductance

C= 3.40 \mu F= 3.40 \cdot 10^{-6}F is the capacitance

Therefore, substituting in the formula for the angular frequency, we find

\omega=\frac{1}{\sqrt{LC}}=\frac{1}{\sqrt{(5.30\cdot 10^{-3}H)(3.40\cdot 10^{-6} F)}}=7449 rad/s

C) 39.5 \Omega

Now we can us the formulas of the reactances written in part A). We have:

- Capacitive reactance:

X_C = \frac{1}{\omega C}=\frac{1}{(7449 rad/s)(3.40\cdot 10^{-6}F)}=39.5 \Omega

- Inductive reactance:

X_L = \omega L=(7449 rad/s)(5.30\cdot 10^{-3}H)=39.5 \Omega

7 0
3 years ago
Other questions:
  • Question 17 options:A 71.8 kg man goes from an area where the acceleration due to gravity is 9.79 m/s2 to an area where the acce
    8·1 answer
  • Calculate the average speed in metres per second from Glasgow to Edinburgh
    11·1 answer
  • A -3.00 nc point charge is at the origin, and a second -5.50 nc point charge is on the x-axis at x = 0.800 m. find the electric
    10·1 answer
  • True or false the molecular formula for ibuprofen is the same as the empirical formula
    14·1 answer
  • In 2-3 complete sentences, explain why the needle on a compass always points in the direction of magnetic north.
    6·2 answers
  • Where would the barycenter of these two bodies be located given their masses?
    8·1 answer
  • To test the quality of a tennis ball, you drop it onto the floor from a height of 4.00 m. It rebounds to a height of 2.00 m. If
    10·1 answer
  • When an aluminum bar is connected between a hot reservoir at 720 K and a cold reservoir at 358 K, 3.00 kJ of energy is transferr
    6·1 answer
  • Delaney loves her new kiddie pool, but she is afraid to get wet. She crawls around the outside of the pool for hours. Jocelyn sa
    10·1 answer
  • a car initially at rest move with the constant accerates along straght line read after it's spread increase and finally related
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!