Answer:
0.003034 s
1.035 m
4.5 m
Explanation:
= frequency of the tone = 329.6 Hz
= Time period of the sound wave
we know that, Time period and frequency are related as

= speed of the sound in the air = 341 ms⁻¹
wavelength of the sound is given as

= speed of the sound in the water = 1480 ms⁻¹
wavelength of the sound in water is given as

Answer:
r₂ = 0.316 m
Explanation:
The sound level is expressed in decibels, therefore let's find the intensity for the new location
β = 10 log
let's write this expression for our case
β₁ = 10 log \frac{I_1}{I_o}
β₂ = 10 log \frac{I_2}{I_o}
β₂ -β₁ = 10 (
)
β₂ - β₁ = 10
log \frac{I_2}{I_1} =
= 3
= 10³
I₂ = 10³ I₁
having the relationship between the intensities, we can use the definition of intensity which is the power per unit area
I = P / A
P = I A
the area is of a sphere
A = 4π r²
the power of the sound does not change, so we can write it for the two points
P = I₁ A₁ = I₂ A₂
I₁ r₁² = I₂ r₂²
we substitute the ratio of intensities
I₁ r₁² = (10³ I₁ ) r₂²
r₁² = 10³ r₂²
r₂ = r₁ / √10³
we calculate
r₂ =
r₂ = 0.316 m
The final momentum of the body is equal to 120 Kg.m/s.
<h3>What is momentum?</h3>
Momentum can be described as the multiplication of the mass and velocity of an object. Momentum is a vector quantity as it carries magnitude and direction.
If m is an object's mass and v is its velocity then the object's momentum p is:
. The S.I. unit of measurement of momentum is kg⋅m/s, which is equivalent to the N.s.
Given the initial momentum of the body = Pi = 20 Kg.m/s
The force acting on the body, Pf = 25 N
The time, Δt = 4-0 = 4s
The Force is equal to the change in momentum: F ×Δt = ΔP
25 × 4 = P - 20
100 = P - 20
P = 100 + 20 = 120 Kg.m/s
Therefore, the final momentum of a body is 120 Kg.m/s.
Learn more about momentum, here:
brainly.com/question/4956182
#SPJ1
Answer:
6
Explanation:
Number of lines emanate from + 5 micro coulomb is 15 .
They terminates at negative charges that means at - 3 micro coulomb and - 2 micro Coulomb.
the electric field lines terminates at - 3 micro Coulomb and - 2 micro Coulomb is in the ratio of 3 : 2.
So the lines terminating at - 3 micro coulomb
= 
So the lines terminating at - 2 micro coulomb
= 
So, the number of filed lines terminates at - 2 micro Coulomb are 6.
Explanation:
F = ma, and a = Δv / Δt.
F = m Δv / Δt
Given: m = 60 kg and Δv = -30 m/s.
a) Δt = 5.0 s
F = (60 kg) (-30 m/s) / (5.0 s)
F = -360 N
b) Δt = 0.50 s
F = (60 kg) (-30 m/s) / (0.50 s)
F = -3600 N
c) Δt = 0.05 s
F = (60 kg) (-30 m/s) / (0.05 s)
F = -36000 N