The moon clock is A) (9.8/1.6)h compared to 1 hour on Earth
Explanation:
The period of a simple pendulum is given by the equation
![T=2\pi \sqrt{\frac{L}{g}}](https://tex.z-dn.net/?f=T%3D2%5Cpi%20%5Csqrt%7B%5Cfrac%7BL%7D%7Bg%7D%7D)
where
L is the length of the pendulum
g is the acceleration of gravity
In this problem, we want to compare the period of the pendulum on Earth with its period on the Moon. The period of the pendulum on Earth is
![T_e=2\pi \sqrt{\frac{L}{g_e}}](https://tex.z-dn.net/?f=T_e%3D2%5Cpi%20%5Csqrt%7B%5Cfrac%7BL%7D%7Bg_e%7D%7D)
where
is the acceleration of gravity on Earth
The period of the pendulum on the Moon is
![T_m=2\pi \sqrt{\frac{L}{g_m}}](https://tex.z-dn.net/?f=T_m%3D2%5Cpi%20%5Csqrt%7B%5Cfrac%7BL%7D%7Bg_m%7D%7D)
where
is the acceleration of gravity on the Moon
Calculating the ratio of the period on the Moon to the period on the Earth, we find
![\frac{T_m}{T_e}=\frac{g_e}{g_m}=\frac{9.8}{1.6}](https://tex.z-dn.net/?f=%5Cfrac%7BT_m%7D%7BT_e%7D%3D%5Cfrac%7Bg_e%7D%7Bg_m%7D%3D%5Cfrac%7B9.8%7D%7B1.6%7D)
Therefore, for every hour interval on Earth, the Moon clock will display a time of
A) (9.8/1.6)h
#LearnwithBrainly
A falling object (directly downward) is slowed down by air resistance. In turn it would take longer to fall.
Answer:
Una secadora de cabello tiene una resistencia de 10Ω al circular una corriente de 6 Amperes, si está conectado a una diferencia de potencial de 120 V, durante 18 minutos ¿Qué cantidad de calor produce?, expresado en calorías
Explanation:
Una secadora de cabello tiene una resistencia de 10Ω al circular una corriente de 6 Amperes, si está conectado a una diferencia de potencial de 120 V, durante 18 minutos ¿Qué cantidad de calor produce?, expresado en calorías
Answer: Everything except heat and density
Explanation: