1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ray Of Light [21]
3 years ago
12

What is the difference between abiotic and biotic factors?

Physics
2 answers:
butalik [34]3 years ago
6 0
Abiotic is not living and biotic is alive
lapo4ka [179]3 years ago
3 0

Answer:

Abiotic referfers to non-living and biotic factors are living or once living

Explanation:

You might be interested in
How many nanoseconds does it take light to travel 3.50 ft in vacuum?
Fiesta28 [93]
Answer:3.56 nanosecond

In this case, you are asked the time and given the light distance(3.5ft)
To answer this question you would need to know the velocity of light. Speed of light is <span>299792458m/s. Then the calculation would be:

time= distance/speed
time= 3.5 ft / (</span>299792458m/s) x 0.3048 meter/ 1 ft=  3.56 10^{-9} second or 3.56 nanosecond
6 0
3 years ago
NEED ASAP!! A box of mass 10 kg requires 20 N to slide it across a surface. What is the weight of the box? What is the coefficie
kaheart [24]

Answer: 7

Explanation: 7 is the superior number

3 0
3 years ago
Object A has 27 J of kinetic energy. Object B has one-quarter the mass of object A.
andreev551 [17]

Answer:

the final speed of object A changed by a factor of  \frac{1}{\sqrt{3} } = 0.58

the final speed of object B changed by a factor of \sqrt{\frac{5}{3} } = 1.29

Explanation:

Given;

kinetic energy of object A, = 27 J

let the mass of object A = m_A

then, the mass of object B = m_B = \frac{m_A}{4}

work done on object A = -18 J

work done on object B = -18 J

let v_i be the initial speed

let v_f be the final speed

For object A;

K.E_A = 27\\\\\frac{1}{2} m_A v_i^2 = 27\\\\m_A v_i^2  = 54\\\\m_A = \frac{54}{v_i^2} ----Equation \ (1)\\\\Apply \ work-energy \ theorem;\\\\\delta K.E_A = -18\\\\\frac{1}{2} m_A v_f^2 - \frac{1}{2} m_A v_i^2 = -18\\\\\frac{1}{2} m_A ( v_f^2 \ -  v_i^2 )\ =- 18\\\\v_f^2 \ -  v_i^2  = -\frac{36}{m_A} ---Equation \ (2)\\\\v_f^2 \ -  v_i^2  = -\frac{36v_i^2}{54}\\\\ v_f^2 \ =v_i^2 - \frac{36v_i^2}{54}\\\\ v_f^2 = \frac{54v_i^2 -36v_i^2 }{54} \\\\v_f^2 = \frac{18v_i^2}{54} \\\\v_f^2 = \frac{v_i^2}{3} \\\\

v_f = \sqrt{\frac{v_i^2}{3} }\\\\v_f = \frac{1}{\sqrt{3} } \ v_i\\\\

Thus, the final speed of object A changed by a factor of  \frac{1}{\sqrt{3} } = 0.58

To obtain the change in the final speed of object B, apply the following equations.

K.E_B_i = \frac{1}{2} m_Bv_i^2\\\\m_B = \frac{m_A}{4} \\\\K.E_B_i = \frac{1}{2}(\frac{m_A}{4} )v_i^2\\\\K.E_B_i = \frac{m_Av_i^2}{8} \\\\But, \ m_Av_i^2 = 54 \\\\K.E_B_i = \frac{54}{8} \\\\Apply \ work-energy \ theorem ;\\\\\delta K.E = -18\\\\K.E_f -K.E_i = -18\\\\\frac{1}{2}m_Bv_f^2 - \frac{1}{2} m_Bv_i^2 = -18\\\\Recall \ m_B =  \frac{m_A}{4} \\\\\frac{1}{2}(\frac{m_A}{4} )v_f^2 - \frac{1}{2}(\frac{m_A}{4} )v_i^2 = -18\\\\\frac{1}{2}\times \frac{m_A}{4} (v_i^2 -v_f^2) = 18\\\\

\frac{1}{2}\times \frac{m_A}{4} (v_i^2 -v_f^2) = 18\\\\v_i^2 -v_f^2 = \frac{8}{m_A} \times 18\\\\v_i^2 -v_f^2 =\frac{144}{m_A} \\\\But , m_A = \frac{54}{v_i^2} \\\\v_i^2 -v_f^2 =\frac{144v_i^2}{54} \\\\v_f^2 = v_i^2 - \frac{144v_i^2}{54}\\\\v_f^2 = \frac{54v_i^2-144v_i^2}{54}\\\\ v_f^2 = \frac{-90v_i^2}{54} \\\\v_f^2 = \frac{-5v_i^2}{3} \\\\|v_f| = \sqrt{\frac{5v_i^2}{3}} \\\\|v_f| = \sqrt{\frac{5}{3}} \ v_i

Thus, the final speed of object B changed by a factor of \sqrt{\frac{5}{3} } = 1.29

3 0
3 years ago
You are performing a knee extension exercise. You hold a 20kg weight at full knee extension. The weight is 0.4m from your knee j
dmitriy555 [2]

Answer:

The moment is -78.4 N-m (clockwise).

Explanation:

Given:

Mass of the object (m) = 20 kg

Distance of the object from the knee joint (d) = 0.4 m

Weight of leg is not considered.

Acceleration due to gravity (g) = 9.8 m/s²

Now, weight of the object is equal to the product of its mass and acceleration due to gravity. So,

Weight = Mass × Acceleration due to gravity

            = mg=20\times 9.8 =196\ N

We know that, moment of a force about a point is defined as the product of force applied and the perpendicular distance between the point and the line of application of force.

Moment of the given weight about the knee joint is given as:

Moment about knee joint = Weight × Distance from knee joint to weight

Moment about knee joint = 196 × 0.4 = 78.4 Nm

Now, from the diagram below, we can observe that, the weight acts vertically down and thus the sense of rotation about the knee joint at point O is clockwise. So, moment is negative.

Therefore, the moment is -78.4 N-m (clockwise).

7 0
3 years ago
What do we get from the area between the speed-time graph of a body and the time axis?​
maxonik [38]

Explanation:

The area between the speed-time graph f a body and time axis measures the distance travelled by the body

7 0
3 years ago
Other questions:
  • Can someone pls answer number 8 for me pls
    10·1 answer
  • How much heat energy in megajoules is needed to convert 7 kilograms of ice at -9c to water at 0c
    5·2 answers
  • The drawing below shows a person who, starting from rest at the top of a cliff, swings down at the end of a rope, releases it, a
    13·1 answer
  • The CIA investigated hypnosis as a possible tool for interrogating prisoners. Why did they decide it was unsuitable for that
    15·2 answers
  • We are usually not aware of the electric force acting between two everyday objects because
    13·2 answers
  • Where will the spacecraft be when the gravitational forces acting on it are equal?
    9·1 answer
  • Give the SI unit. For physics
    12·1 answer
  • The idea that species change over time is called
    8·2 answers
  • Explain the energy transformations that occur when accelerating in a gasoline<br> vehicle.
    5·2 answers
  • Open the resistance in a wire simulation, adjust only the length of the resistor, what happens to resistor?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!