Probably 90 j but im not sure I haven’t done any work like this in a while
Answer:
D
Explanation:
The gravity is pushing the water downward so Wayne could go down but the water is pushing Wayne to go up which would make him float.
Answer:
SKID
Explanation:
In general, airplane tracks are flat, they do not have cant, consequently the friction force is what keeps the bicycle in the circle.
Let's use Newton's second law, let's set a reference frame with the horizontal x-axis and the vertical y-axis.
Y axis y
N- W = 0
N = W
X axis (radial)
fr = m a
the acceleration in the curve is centripetal
a =
the friction force has the expression
fr = μ N
we substitute
μ mg = m v²/r
v =
we calculate
v =
v = 1,715 m / s
to compare with the cyclist's speed let's reduce to the SI system
v₀ = 18 km / h (1000 m / 1 km) (1 h / 3600 s) = 5 m / s
We can see that the speed that the cyclist is carrying is greater than the speed that the curve can take, therefore the cyclist will SKID
Question is from B to C
Answer: (b) 1.5m/s
x1=3m, x2=9m
t1=1s, t2=5s
Displacement, ∆x=(9-3)m=6m
Time elapsed, ∆t=(5-1)s=4s
So average velocity v =∆x/∆t=6/4=1.5m/s
Hello!
A stretched spring has 5184 J of elastic potential energy and a spring constant of 16,200 N/m. What is the displacement of the spring ?
Data:



For a spring (or an elastic), the elastic potential energy is calculated by the following expression:

Where k represents the elastic constant of the spring (or elastic) and x the deformation or displacement suffered by the spring.
Solving:









Answer:
The displacement of the spring = 0.8 m
_______________________________
I Hope this helps, greetings ... Dexteright02! =)