Answer:Temperature increases
Explanation: As the gas in the container is an ideal gas so it should follow the ideal gas equation, the equation of state.
We know ideal gas equation to be PV=nRT where
P=pressure
V=Volume
T=Temperature
R=Real gas constant
n=Number of moles
since the gas is insulated such that no heat goes into or out of the system .
When we compress the ideal gas using a piston, Thermodynamically it means that work is done on the system by the surroundings.
Now as the ideal gas is been compressed so the volume of the gas would decrease and slowly a time will reach when no more gas can be compressed that is there cannot be any further decrease in volume of the gas.
From the equation PV=nRT
Once there is no further compression is possible hence volume becomes constant so pressure of the ideal gas becomes directly proportional to the temperature as n and R are constants. Also as the pressure and volume are inversely related so an decrease in volume would lead to an increase in pressure.
As the ideal gas is compressed so the pressure of the gas would increase since the gas molecules have smaller volume available after compression hence the gas molecules would quite frequently have collisions with other gas molecules or piston and this collision would lead to increase in speed of the gas molecules and so the pressure would increase .
The increase in pressure would lead to an increase in temperature as show by the above ideal gas equation because the pressure and temperature are directly related.
So here we can say that work done on the system by surroundings leads to increase in temperature of the system.
When the dew point temperature and air temperature are equal, the air is said to be saturated. Dew point temperature is NEVER GREATER than the air temperature. Therefore, if the air cools, moisture must be removed from the air and this is accomplished through condensation.
Answer:

Explanation:
The work function of the sodium= 495.0 kJ/mol
It means that
1 mole of electrons can be removed by applying of 495.0 kJ of energy.
Also,
1 mole =
So,
electrons can be removed by applying of 495.0 kJ of energy.
1 electron can be removed by applying of
of energy.
Energy required =
Also,
1 kJ = 1000 J
So,
Energy required =
Also,
Where,
h is Plank's constant having value
c is the speed of light having value
So,
Also,
1 m = 10⁻⁹ nm
So,

Answer:
V₁ = 10 mL
Explanation:
Given data:
Initial volume of HCl = ?
Initial molarity = 3.0 M
Final molarity = 0.10 M
Final volume = 300.0 mL
Solution:
Formula:
M₁V₁ = M₂V₂
M₁ = Initial molarity
V₁ = Initial volume of HCl
M₂ =Final molarity
V₂ = Final volume
Now we will put the values.
3.0 M ×V₁ = 0.10 M×300.0 mL
3.0 M ×V₁ = 30 M.mL
V₁ = 30 M.mL /3.0 M
V₁ = 10 mL