- The mass percent of
Pentane in solution is 16.49%
- The mass percent of
Hexane in solution is 83.51%
<u>Explanation</u>:
- Take 1 kg basis for the vapor: 35.5 mass% pentane = 355 g pentane with 645 g hexane.
-
Convert these values to mol% using their molecular weights:
Pentane: Mp = 72.15 g/mol -> 355g/72.15 g/mol = 4.92mol
Hexane: Mh = 86.18 g/mol -> 645g/86.18 g/mol = 7.48mol
Pentane mol%: yp = 4.92/(4.92+7.48) = 39.68%
Hexane mol%: yh = 100 - 39.68 = 60.32%
Pp-vap = 425 torr = 0.555atm
Ph-vap = 151 torr = 0.199atm
-
From Raoult's law we know:
Pp = xp
Pp - vap = yp
Pt (1)
Ph = xh
Ph - vap = yh
Pt (2)
-
Since it is a binary mixture we can write xh = (1 - xp) and yh = (1 - yp), therefore (2) becomes:
(1 - xp)
Ph - vap = (1 - yp)
Pt (3)
-
Substituting (1) into (3) we get:
(1-xp)
Ph - vap = (1 - yp)
xp
Pp - vap / yp (4)
xp = Ph - vap / (Pp - vap/yp - Pp - vap + Ph - vap) (5)
-
Subbing in the values we find:
Pentane mol% in solution: xp = 19.08%
Hexane mol% in solution: xh = 80.92%
-
Now for converting these mol% to mass%, take 1 mol basis for the solution and multiplying it by molar mass:
mp = 0.1908 mol
72.15 g/mol
= 13.766 g
mh = 0.8092 mol
86.18 g/mol
= 69.737 g
-
Mass% of Pentane solution = 13.766/(13.766+69.737)
= 16.49%
-
Mass% of Hexane solution = 83.51%
Answer:
Option B. A
Explanation:
From the question given above, the following data were obtained:
C(s) + 2H₂ (g) —> CH₄ (g). ΔH = –74.9 kJ
From the reaction above, we can see that the enthalpy change (ΔH) is negative (i.e –74.9 KJ) which implies that the heat content of the reactants is greater than the heat content of the products. Thus, the reaction is exothermic reaction.
For an exothermic reaction, the energy profile diagram is drawn in such a way that the heat content of reactants is higher than the heat content of products because the enthalpy change
(ΔH) is always negative.
Thus, diagram A (i.e option B) gives the correct answer to the question.
Answer. After cytokinesis is completed at end of meiosis - I two haploid cells are formed.on:
Answer:
C. 10.540 moles
Explanation:
divide grams by molar mass to get moles
Answer is: f<span>ormula for the hydrated compound is CuSO</span>₄·3H₂O.
ω(H₂O) = 25,3% = 0,253.
ω(CuSO₄) = 100% - 25,3%.
ω(CuSO₄) = 74,7% = 0,747.
ω(H₂O) : M(H₂O) = ω(CuSO₄) : M(CuSO₄).
0,253 : M(H₂O) = 0,747 : 159,6 g/mol.
M(H₂O) = (0,253 · 159,6 g/mol) ÷ 0,747.
M(H₂O) = 54 g/mol.
N(H₂O) = 54 g/mol ÷ 18 g/mol.
N(H₂O) = 3.