Explanation:
Exothermic reaction is defined as the reaction in which release of heat takes place. This also means that in an exothermic reaction, bond energies of reactants is less than the bond energies of products.
Hence, difference between the energies between the reactants and products releases as heat and therefore, enthalpy of the system will decrease.
Whereas in an endothermic reaction, heat is supplied from outside and absorbed by the reactant molecules. Hence, enthalpy of the system increases.
As water acts as a coolent and when fuel rods in a nuclear reactor are immersed in it then heat created by coolent is absorbed by water and then it changes into steam.
Since, absorption of heat occurs in the nuclear reactor. Therefore, it is an endothermic reaction.
Thus, we can conclude that nuclear reactors use fuel rods to heat water and generate steam. This process is endothermic.
Acceleration = (change in speed) / (time for the change)
Change in speed = (end speed) - (start speed) = (15 m/s - 7 m/s) = 8 m/s
time for the change = 2 minutes = 120 seconds
Acceleration = (8 m/s) / (120 seconds)
Acceleration = 0.067 m/s²
Answer:
Cabinets are made to open one at a time so that there's not much of space taken up when all the drawers are open. Hope this helps.
There is more wire to travel through,farther distance, and a higher possibility of other disruptions. Please Mark Brainliest!!!
Answer:
Distance = 3.69 × 10^9 m
The distance from the probe to Earth is 3.69 × 10^9 m
Explanation:
Distance from the probe to the Earth can be derived using the simple motion formula;
Distance = speed × time .....1
Since a radio signal uses an electromagnetic wave to transfer signal, it has the same speed as the speed of light.
Speed of radio signal = speed of light = 3.0 × 10^8 m/s
time taken to reach the earth = 12.3 seconds
Substituting the values of speed and time into equation 1;
Distance = 3.0 × 10^8 m/s × 12.3 s
Distance = 36.9 × 10^8 m
Distance = 3.69 × 10^9 m
Note: all electromagnetic radiation have the same speed which is equal to 3.0 × 10^8 m/s