The conservation of momentum states that the total momentum in a system is constant if there is no external force acting on the system. The total momentum in the gun bullet system is 0 so it must stay that way.
The momentum of the bullet is mv = 0.015*500=7.5
The momentum of the gun must be the same to keep the total momentum of the system equal to zero, so we know that p = 7.5 for the gun.
Substituting this in we get:
7.5=3.1x
x=7.5/3.1
x=2.42
So the speed of the gun is 2.4m/s.
Much energy as would Microraptor gui have to expend to fly with a speed of 10 m/s for 1.0 minutes is 486 J.
The first step is to find the energy that Microraptor must release to fly at 10 m/s for 1.0 minutes. The energy that Microraptor must expend to fly can be found using the relationship between Power and Energy.
P = E/t
Where:
P = power (W)
T = time (s)
Now, a minimum of 8.1 W is required to fly at 10 m/s. So, the energy expended in 1 minute (60 seconds) is
P = E/t
E = P x t
E = 8.1 x 60
E = 486 Joules
Thus, the energy that Microraptor must expend to fly at 10 m/s for 1.0 minutes is the 486 J.
Learn more about Microraptor gui here brainly.com/question/1200755
#SPJ4
Gravitational I think would be the answer, Hope this helps!
Answer:
Acceleration = 10.06 m/s²
Explanation:
1 mile = 1.6093km
1609.3m = 1 mile
1 m =
mile
50.0 miles/hour =
m/s
= 22.35m/s
from equation
S = Ut + 1/2 at²
v = U + at
22.35 = 0 + a * 2.22
a = 22.35 ÷ 2.22
= 10.06 m/s²