Answer:
Distance, d = 192 meters
Explanation:
We have,
Initial velocity of an object is 10 m/s
Acceleration of the object is 3.5 m/s²
Time, t = 8 s
We need to find the distance travelled by the object during that time. Second equation of motion gives the distance travelled by the object. It is given by :


So, the distance travelled by the object is 192 meters.
Answer:
Explanation:
radius of circle r = 0.9 m.
(a ) In a motion on circular path , work done is zero because force ( centripetal force ) acts perpendicular to displacement .
( b )
Tension in string T = m ω²r
Putting the values
60 = .072 x ω² x 0.9
ω² = 926
ω = 30.4 rad /s
angle made in 20 revolutions θ = 20 x 2π = 126.6 rad
time taken = θ / ω
= 126.6 / 30.4
= 4.16 s .
Answer:
1.) Frequency F = 890.9 Hz
2.) Wavelength (λ) = 0.893 m
Explanation:
1.) Given that the wavelength = 0.385m
The speed of sound = 343 m / s
To predict the frequency, let us use the formula V = F λ
Where (λ) = wavelength = 0.385m
343 = F × 0.385
F = 343/0.385
F = 890.9 Hz
2.) Given that the frequency = 384Hz
Using the formula again
V = F λ
λ = V/F
Wavelength (λ) = 343/384
Wavelength (λ) = 0.893 m
The two questions can be solved with the use of formula