To solve this problem it is necessary to apply the concepts given in the kinematic equations of movement description.
From the perspective of angular movement, we find the relationship with the tangential movement of velocity through

Where,
Angular velocity
v = Lineal Velocity
R = Radius
At the same time we know that the acceleration is given as the change of speed in a fraction of the time, that is

Where
Angular acceleration
Angular velocity
t = Time
Our values are




Replacing at the previous equation we have that the angular velocity is



Therefore the angular speed of a point on the outer edge of the tires is 66.67rad/s
At the same time the angular acceleration would be



Therefore the angular acceleration of a point on the outer edge of the tires is 
E. all of the above
An umbrella tends to move upward on a windy day because _<span>A. buoyancy increases with increasing wind speed </span>
<span>B. air gets trapped under the umbrella and pushes it up </span>
<span>C. the wind pushes it up </span>
<span>D. a low-pressure area is created on top of the umbrella </span>
The answer is False give thanks for the answer m8 and happy Halloween
Answer:
20 Ω
Explanation:
Voltage, current, and resistance are related by Ohm's law:
V = IR
40 V = (4 A) R
R = 10 Ω
The total resistance of the circuit is 10 Ω.
Resistors in parallel have a total resistance of:
1/R = 1/R₁ + 1/R₂
1 / (10 Ω) = 1 / (20 Ω) + 1/R₂
R₂ = 20 Ω