1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SpyIntel [72]
3 years ago
9

His is the geologic process of breaking down rocks into smaller and smaller pieces. There are two main types: chemical and mecha

nical.
A) weathering
B) erosion
C) Deposition
Physics
2 answers:
garik1379 [7]3 years ago
8 0

Answer:

Weathering

Explanation:

The geologic process of breaking down rocks into smaller and smaller units or pieces is known as weathering.

The physical disintegration and chemical decomposition of rocks to form sediments and soils is known as weathering.

The agents of weathering are wind, water and glacier.

  • Chemical weathering entails the decomposition of rocks.
  • Mechanical weathering is the physical disintegration of rocks.

Therefore, weathering breaks down rocks.

Erosion removes the weathered materials.

dimulka [17.4K]3 years ago
4 0

Answer:

Weathering

Explanation:

You might be interested in
What is the final concentration of DD at equilibrium if the initial concentrations are [A][A]A_i = 1.00 MM and [B][B]B_i = 2.00
pentagon [3]

Answer:

A) Concentration of A left at equilibrium of we started the reaction with [A] = 2.00 M and [B] = 2.00 M is 0.55 M.

B) Final concentration of D at equilibrium if the initial concentrations are [A] = 1.00 M and [B] = 2.00 M is 0.90 M.

[D] = 0.90 M

Explanation:

With the first assumption that the volume of reacting mixture doesn't change throughout the reaction.

This allows us to use concentration in mol/L interchangeably with number of moles in stoichiometric calculations.

- The first attached image contains the correct question.

- The solution to part A is presented in the second attached image.

- The solution to part B is presented in the third attached image.

8 0
3 years ago
A block whose weight is 45.8 N rests on a horizontal table. A horizontal force of 36.6 N is applied to the block. The coefficien
Liula [17]

Answer:

Yes it will move and a= 4.19m/s^2

Explanation:

In order for the box to move it needs to overcome the maximum static friction force

Max Static Friction = μFn(normal force)

plug in givens

Max Static friction = 31.9226

Since 36.6>31.9226, the box will move

Mass= Wieght/g which is 45.8/9.8= 4.67kg

Fnet = Fapp-Fk

= 36.6-16.9918

=19.6082

=ma

Solve for a=4.19m/s^2

7 0
3 years ago
Electrically charged particles are found primarily in
lesantik [10]

Answer:

the ionosphere

.......................................................

8 0
2 years ago
A ball is thrown from a rooftop with an initial downward velocity of magnitude vo = 2.9 m/s. The rooftop is a distance above the
Step2247 [10]

Answer:

a) The velocity of the ball when it hits the ground is -20.5 m/s.

b) To acquire a final velocity of 27.3 m/s, the ball must be thrown from a height of 38 m.

Explanation:

I´ve found the complete question on the web:

<em />

<em>A ball is thrown from a rooftop with an initial downward velocity of magnitude v0=2.9 m/s. The rooftop is a distance above the ground, h= 21 m. In this problem use a coordinate system in which upwards is positive.</em>

<em>(a) Find the vertical component of the velocity with which the ball hits the ground.</em>

<em>(b) If we wanted the ball's final speed to be exactly 27, 3 m/s from what height, h (in meters), would we need to throw it with the same initial velocity?</em>

<em />

The equation of the height and velocity of the ball at any time "t" are the following:

h = h0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

h = height of the ball at time t.

h0 = initial height.

v0 = initial velocity.

t = time.

g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive).

v = velocity of the ball at a time "t".

First, let´s find the time it takes the ball to reach the ground (the time at which h = 0)

h = h0 + v0 · t + 1/2 · g · t²

0 = 21 m - 2.9 m/s · t - 1/2 · 9.8 m/s² · t²

Solving the quadratic equation using the quadratic formula:

t = 1.8 s  ( the other solution of the quadratic equation is rejected because it is negative).

Now, using the equation of velocity, let´s find the velocity of the ball at

t = 1.8 s:

v = v0 + g · t

v = -2.9 m/s - 9.8 m/s² · 1.8 s

v = -20.5 m/s

The velocity of the ball when it hits the ground is -20.5 m/s.

b) Now we have the final velocity and have to find the initial height. Using the equation of velocity we can obtain the time it takes the ball to acquire that velocity:

v = v0 + g · t

-27.3 m/s = -2.9 m/s - 9.8 m/s² · t

(-27.3 m/s + 2.9 m/s) / (-9.8 m/s²) = t

t = 2.5 s

The ball has to reach the ground in 2.5 s to acquire a velocity of 27.3 m/s.

Using the equation of height, we can obtain the initial height:

h = h0 + v0 · t + 1/2 · g · t²

0 = h0 -2.9 m/s · 2.5 s - 1/2 · 9.8 m/s² · (2.5 s)²

-h0 = -2.9 m/s · 2.5 s - 1/2 · 9.8 m/s² · (2.5 s)²

h0 = 38 m

To acquire a final velocity of 27.3 m/s, the ball must be thrown from a height of 38 m.

6 0
3 years ago
As a mass on a spring moves farther from the equilibrium position, how do the velocity, acceleration, and force change
Umnica [9.8K]
Refer to the diagram shown below.

m =  the mass of the object
x = the distance of the object from the equilibrium position at time t.
v = the velocity of the object at time t
a = the acceleration of the object at time t
A =  the amplitude ( the maximum distance) of the mass from the equilibrium
        position

The oscillatory motion of the object (without damping) is given by
x(t) = A sin(ωt)
where
ω =  the circular frequency of the motion
T =  the period of the motion so that ω = (2π)/T

The velocity and acceleration are respectively
v(t) = ωA cos(ωt)
a(t) = -ω²A sin(ωt)

In the equilibrium position,
x is zero;
v is maximum;
a is zero.

At the farthest distance (A) from the equilibrium position,
x is maximum;
v is zero;
a is zero.

In the graphs shown, it is assumed (for illustrative purposes) that
A = 1 and T = 1.

6 0
3 years ago
Other questions:
  • a charge of 6.4x10^-7 C experiences an electric force of 1.8x10^-1 N what is the electric field strength
    10·1 answer
  • HURRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRY
    11·2 answers
  • given a 60uC point charge located at the origin, find the total electric flux passing through: a) that portion of the sphere r=2
    6·1 answer
  • NVM hwaskdhslak djklasj dkjaskj dklasj kJKS KLj klskla
    5·2 answers
  • Spring has an unstretched length of 0.40 meters. The spring is stretched to a length of 0.60 meters when a 10.-newton weight is
    7·1 answer
  • What type of energy does friction produce?
    6·1 answer
  • Must physics always be explained by math?
    6·1 answer
  • A solid ball is rolling along a horizontal surface at 3.7 m/s when it encounters an upward
    7·1 answer
  • (A) The figure shows the setup which is used to observe an image formed wen a lighted candle is kept in front of a bi convex len
    13·1 answer
  • four particles connected by rigid rods of negligible mass where y1 = 5.70 m. the origin is at the center of the rectangle. The s
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!