Option B
Neptune, Uranus, Saturn, Jupiter, Mars, Earth, Venus, Mercury correctly describes the usual order of planets inward toward the sun
<u>Explanation:</u>
Our solar system continues much considerably than the eight planets that revolve around the Sun. The position of the planets in the solar system, commencing inward to the sun is the accompanying: Neptune, Uranus, Saturn, Jupiter, Mars, Earth, Venus, Mercury.
Most next to the Sun, simply rocky material could resist the heat. For this logic, the first four planets: Mercury, Venus, Earth, and Mars are terrestrial planets. The four large outer worlds — Jupiter, Saturn, Uranus, and Neptune: because of their enormous size corresponding to the terrestrial planets. They're also frequently composed of gases like hydrogen, helium, and ammonia preferably than of rocky surfaces.
There’s 8 planets in our solar system: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune.
The change in the player's internal energy is -491.6 kJ. The number of nutritional calories is -117.44 kCal
For this process to take place, some of the basketball player's perspiration must escape from the skin. This is because sweating relies on a physical phenomenon known as the heat of vaporization.
The heat of vaporization refers to the amount of heat required to convert 1g of a liquid into a vapor without causing the liquid's temperature to increase.
From the given information,
- the work done on the basketball is dW = 2.43 × 10⁵ J
The amount of heat loss is represented by dQ.
where;
∴
Using the first law of thermodynamics:b
dU = dQ - dW
dU = -mL - dW
dU = -(0.110 kg × 2.26 × 10⁶ J/kg - 2.43 × 10⁵ J)
dU = -491.6 × 10³ J
dU = -491.6 kJ
The number of nutritional calories the player has converted to work and heat can be determined by using the relation:

dU = -117.44 kcal
Learn more about first law of thermodynamics here:
brainly.com/question/3808473?referrer=searchResults
Answer:
The ball has an initial linear kinetic energy and initial rotational kinetic energy which can both be converted into gravitational potential energy. Therefore the hill with friction will let the ball reach higher.
Explanation:
The ball has an initial linear kinetic energy and initial rotational kinetic energy which can both be converted into gravitational potential energy. Therefore the hill with friction will let the ball reach higher.
This is because:
If we consider the ball initially at rest on a frictionless surface and a force is exerted through the centre of mass of the ball, it will slide across the surface with no rotation, and thus, there will only be translational motion.
Now, if there is friction and force is again applied to the stationary ball, the frictional force will act in the opposite direction to the force but at the edge of the ball that rests on the ground. This friction generates a torque on the ball which starts the rotation.
Therefore, static friction is infact necessary for a ball to begin rolling.
Now, from the top of the ball, it will move at a speed 2v, while the centre of mass of the ball will move at a speed v and lastly, the bottom edge of the ball will instantaneously be at rest. So as the edge touching the ground is stationary, it experiences no friction.
So friction is necessary for a ball to start rolling but once the rolling condition has been met the ball experiences no friction.
<span>They are used to measure and map effluent and pollution discharges from factories and sewerage plants, and the movement of sand around harbours, rivers and bays. Radioactive materials used for such purposes have short half-lives and decay to background levels within days.</span>