Answer:
Mass of Ag produced = 64.6 g
Note: the question is, how many grams of Ag is produced from 19.0 g of Cu and 125 g of AgNO3
Explanation:
Equation of the reaction:
Cu + 2AgNO3 ---> 2Ag + Cu(NO3)2
From the equation above, 1 mole of Cu reacts with 2 moles of AgNO3 to produce 2 moles of Ag and 1 mole of Cu(NO3)2.
Molar mass of the reactants and products are; Cu = 63.5 g/mol, Ag = 108 g/mol, AgNO3 = 170 g/mol, Cu(NO3)2 = 187.5 g/mol
To determine, the limiting reactant;
63.5 g of Cu reacts with 170 * 2 g of AgNO3,
19 g of Cu will react with (340 * 19)/63.5 g of AgNO3 =101.7 g of AgNO3.
Since there are 125 g of AgNO3 available for reaction, it is in excess and Cu is the limiting reactant.
63.5 g of Cu reacts to produce 108 * 2 g of Ag,
19 g of Cu will react to produce (216 * 19)/63.5 g of Ag = 64.6 g of Ag.
Therefore mass of Ag produced = 64.6g
Answer:
I don't have the number of cubes in each bag, but whichever bag had the most cubes would have the most kinetic energy as it falls

If the half-life of a sample of a radioactive substance is 30 seconds, how much would be left after 60 seconds? <span>
A. one-fourth</span>
Complete one rotation.
Hope this helps.
Answer:
If we assume that there will be enough Hydrogen for the reaction to occur, then there will be 8 moles of NH
Explanation:
The balanced equation will look like this:
4N2 + 4H2 -> 8NH