Answer:
Pu - 239 have the smaller critical mass.
Explanation:
Critical mass is the smallest amount of certain element of mass that is needed to achieve a nuclear chain reaction early . Since Pu - 239 releases an average of 2.7 neutrons per fission as compared to U - 235 that releases 2.5 neutrons per fission. So, Pu - 239 has smaller critical mass, because Pu - 239 has a higher probability for fission and produces a large no. of neutrons per fission event. Infact of all the basic nuclear fuels, Pu - 239 has smallest critical mass. Critical mass depends on the nuclear properties of elements undergoing fission reaction. Hence, as Pu - 239 produces large no. of neutrons per fission than U - 235 and Pu - 239 has smaller critical mass.
<span>Displacement is identified as the net movement of a thing with detail to its initial location. One may journey out of his city and come back. Notwithstanding having enclosed many miles, he will have a displacement of 0. This is true for all trails that have zero displacement that they all go back to their initial position.</span>
Answer:
the answer is D
Explanation:
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object.
Answer:
A: 1.962
B: 3.924
Explanation:
g = G *M /R^2
g = 9.807*M/R^2 the gravitational constant of ground level on earth is about 9.807
g = 9.807*5lbs/R^2 the average brick is about 5 pounds.
g = 9.807*5*10^2. I'm assuming the height is around ten feet to help you out.
with these numbers plugged in you get an acceleration of 0.4905 a final velocity after 4 seconds 1.962. It's height fallen after 4 seconds is 3.924.
( M = whatever the brick weighs it's not specified in the question)
(R = the distance from the ground or how high the scaffold is)
(hopefully you can just plug your numbers in there hope this helps)
1) v = gt = 10*1.5 = 15 m/s
2) r = gt^2 /2 = 10*(1.5)^2 / 2 = 11.25 meters