Ciara is winging....etc
The answer is : 0.60 N, toward the center of the circle
A satellite....etc
The Answer is : 7400 m/s
What is the .....etc
The Answer is : 2.60 m/s
You should note that the melting point of mercury is -38.83°C, while the boiling point is at 356.7°C. Then, that means that there is no latent heat involved here. We only compute for the sensible heat.
ΔH = mCpΔT
The Cp of mercury is 0.14 J/g·°C
Thus,
ΔH = (411 g)(0.14 J/g·°C)(88 - 12°C)
<em>ΔH = 4,373.04 J</em>
Answer:
The beam of light is moving at the peed of:
km/min
Given:
Distance from the isalnd, d = 3 km
No. of revolutions per minute, n = 4
Solution:
Angular velocity,
(1)
Now, in the right angle in the given fig.:

Now, differentiating both the sides w.r.t t:

Applying chain rule:


Now, using
and y = 1 in the above eqn, we get:

Also, using eqn (1),


The distance of an object from the mirror's vertex if the image is real and has the same height as the object is 39 cm.
<h3>What is concave mirror?</h3>
A concave mirror has a reflective surface that is curved inward and away from the light source.
Concave mirrors reflect light inward to one focal point and it usually form real and virtual images.
<h3>
Object distance of the concave mirror</h3>
Apply mirrors formula as shown below;
1/f = 1/v + 1/u
where;
- f is the focal length of the mirror
- v is the object distance
- u is the image distance
when image height = object height, magnification = 1
u/v = 1
v = u
Substitute the given parameters and solve for the distance of the object from the mirror's vertex
1/f = 1/v + 1/v
1/f = 2/v
v = 2f
v = 2(19.5 cm)
v = 39 cm
Thus, the distance of an object from the mirror's vertex if the image is real and has the same height as the object is 39 cm.
Learn more about concave mirror here: brainly.com/question/27841226
#SPJ1