here as it is given that x component of the vector is positive while y component of the vector is negative so we can say the vector must inclined in Fourth quadrant.
So angle must be more than 270 degree and less than 360 degree
Now in order to find the value we can say that




so it is inclined at above angle with X axis in fourth quadrant
Now if angle is to be measured counterclockwise then its magnitude will be

so the correct answer will be 305 degree
Answer:
I think it's TRUE because forces change an object's motion but dont quote me on it ok? Cause I'm not a 100 percent sure
<span>The 2nd truck was overloaded with a load of 16833 kg instead of the permissible load of 8000 kg.
The key here is the conservation of momentum.
For the first truck, the momentum is
0(5100 + 4300)
The second truck has a starting momentum of
60(5100 + x)
And finally, after the collision, the momentum of the whole system is
42(5100 + 4300 + 5100 + x)
So let's set the equations for before and after the collision equal to each other.
0(5100 + 4300) + 60(5100 + x) = 42(5100 + 4300 + 5100 + x)
And solve for x, first by adding the constant terms
0(5100 + 4300) + 60(5100 + x) = 42(14500 + x)
Getting rid of the zero term
60(5100 + x) = 42(14500 + x)
Distribute the 60 and the 42.
60*5100 + 60x = 42*14500 + 42x
306000 + 60x = 609000 + 42x
Subtract 42x from both sides
306000 + 18x = 609000
Subtract 306000 from both sides
18x = 303000
And divide both sides by 18
x = 16833.33
So we have the 2nd truck with a load of 16833.33 kg, which is well over it's maximum permissible load of 8000 kg. Let's verify the results by plugging that mass into the before and after collision momentums.
60(5100 + 16833.33) = 60(21933.33) = 1316000
42(5100 + 4300 + 5100 + 16833.33) = 42(31333.33) = 1316000
They match. The 2nd truck was definitely over loaded.</span>
Yes, the above-given statement is true
<u>Explanation:</u>
- The product of the mass x the velocity will be the same for both. Momentum is the action of a body with a particular mass through space and there is the conservation of momentum.
- Momentum is described as the mass of the object multiplied by its velocity.
- <u>Momentum (p) = Mass (M) * Velocity (v)</u>
- Therefore for two objects with many masses to have a similar momentum, then the lighter one has to be moving quicker than the heavier object.