1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stira [4]
3 years ago
7

A car travels up a hill at a constant speed of 44 km/h and returns down the hill at a constant speed of 74 km/h. Calculate the a

verage
Speed for the round trip.
Physics
1 answer:
Hunter-Best [27]3 years ago
5 0

Answer:

calculate it by yourself

You might be interested in
Which of the following statements is/are true? Check all that apply. A nonconservative force permits a two-way conversion betwee
saul85 [17]

Answer:

A conservative force permits a two-way conversion between kinetic and potential energies.

The work done by a nonconservative force depends on the path taken.

A potential energy function can be specified for a conservative force.

Explanation:

A conservative force is defined as a force whose work done does not depend on the path taken, but only on the initial and final position of motion.

This means that for a conservative force, it is possible to defined a potential energy function U which depends only on the position of the object. An example of conservative force is gravity: the gravitational potential energy of an object, in fact, depends only on its position in the field, not on the path taken.

This behaviour also implies that when an object moves from A to B and then back from B to A, the potential energy gained (or lost) moving from A to B is lost (or re-gained) when moving from B to A. This means that the total mechanical energy (sum of kinetic energy and potential energy) of the object is conserved, and therefore there is a constant conversion between potential and kinetic energy during the motion.

A non-conservative force instead does not show this properties, as the work done by it depends on the path taken, and therefore it is not possible to define a potential energy function. An example of non-conservative force is friction.

According to what we wrote above, therefore, the only correct statements are:

A conservative force permits a two-way conversion between kinetic and potential energies.

The work done by a nonconservative force depends on the path taken.

A potential energy function can be specified for a conservative force.

3 0
2 years ago
Which best describes the energy of a sound wave as it travels through a medium
Solnce55 [7]
C. It depends on the medium
3 0
3 years ago
What is the suitable condition for the superconductivity and high resista (a) Weak phonon-phonon interactions (b) No interaction
Readme [11.4K]

Answer:

(d) A strong electron-phonon interaction

Explanation:

Superconductivity -

The phenomenon of superconductivity is due to the attractive force between electrons from the exchange of the phonons that cause the bound pair of electrons known as cooper pairs .

A strong electron -phonon intercation is suitable condition for superconductivity and high resistance .

4 0
3 years ago
An object of mass m = 4.0 kg, starting from rest, slides down an inclined plane of length l = 3.0 m. The plane is inclined by an
kirill [66]

Answer:

(a-1) d₂=4.89 m: The object slides 4.89 m along the rough surface

(a-2) Work (Wf) done by the friction force while the mass is sliding down the in- clined plane:

Wf=  -20.4 J    is negative

(b) Work (Wg) done by the gravitational force while the mass is sliding down the inclined plane:

Wg= 58.8 J is positive

Explanation:

Nomenclature

vf: final velocity

v₀ :initial velocity

a: acceleleration

d: distance

Ff: Friction force

W: weight

m:mass

g: acceleration due to gravity

Graphic attached

The attached graph describes the variables related to the kinetics of the object (forces and accelerations)

Calculation de of the components of W in the inclined plane

W=m*g

Wx₁ = m*g*sin30°

Wy₁=  m*g*cos30°

Object kinematics on the inclined plane

vf₁²=v₀₁²+2*a₁*d₁

v₀₁=0

vf₁²=2*a₁*d₁

v_{f1} = \sqrt{2*a_{1}*d_{1}  }  Equation (1)

Object kinetics on the inclined plane (μ= 0.2)

∑Fx₁=ma₁  :Newton's second law

-Ff₁+Wx₁ = ma₁   , Ff₁=μN₁

-μ₁N₁+Wx₁ = ma₁      Equation (2)

∑Fy₁=0   : Newton's first law

N₁-Wy₁= 0

N₁- m*g*cos30°=0

N₁  =  m*g*cos30°

We replace   N₁  =  m*g*cos30 and  Wx₁ = m*g*sin30° in the equation (2)

-μ₁m*g*cos30₁+m*g*sin30° = ma₁   :  We divide by m

-μ₁*g*cos30°+g*sin30° = a₁  

g*(-μ₁*cos30°+sin30°) = a₁  

a₁ =9.8(-0.2*cos30°+sin30°)=3.2 m/s²

We replace a₁ =3.2 m/s² and d₁= 3m in the equation (1)

v_{f1} = \sqrt{2*3.2*3}  }

v_{f1} =\sqrt{2*3.2*3}

v_{f1} = 4.38 m/s

Rough surface  kinematics

vf₂²=v₀₂²+2*a₂*d₂   v₀₂=vf₁=4.38 m/s

0   =4.38²+2*a₂*d₂  Equation (3)

Rough surface  kinetics (μ= 0.3)

∑Fx₂=ma₂  :Newton's second law

-Ff₂=ma₂

--μ₂*N₂ = ma₂   Equation (4)

∑Fy₂= 0  :Newton's first law

N₂-W=0

N₂=W=m*g

We replace N₂=m*g inthe equation (4)

--μ₂*m*g = ma₂   We divide by m

--μ₂*g = a₂

a₂ =-0.2*9.8= -1.96m/s²

We replace a₂ = -1.96m/s² in the equation (3)

0   =4.38²+2*-1.96*d₂

3.92*d₂ = 4.38²

d₂=4.38²/3.92

d₂=4.38²/3.92

(a-1) d₂=4.89 m: The object slides 4.89 m along the rough surface

(a-2) Work (Wf) done by the friction force while the mass is sliding down the in- clined plane:

Wf = - Ff₁*d₁

Ff₁= μ₁N₁= μ₁*m*g*cos30°= -0.2*4*9.8*cos30° = 6,79 N

Wf= -  6.79*3 = 20.4 N*m

Wf=  -20.4 J    is negative

(b) Work (Wg) done by the gravitational force while the mass is sliding down the inclined plane

Wg=W₁x*d= m*g*sin30*3=4*9.8*0.5*3= 58.8 N*m

Wg= 58.8 J is positive

6 0
3 years ago
6) what is ararge of speed​
irina [24]

Answer:

in everyday use and in kinematic the speed of an object is the magnitude of the change of its position it is thus a scalar quantity

5 0
3 years ago
Other questions:
  • Simone created a chart to summarize the energy transformations that take place when energy from the wind is used to generate ele
    11·2 answers
  • A person is using a rope to lower a 5.0-n bucket into a well with a constant speed of 2.0 m/s. What is the magnitude of the forc
    6·2 answers
  • What is an example of a conceptual model in science?
    14·2 answers
  • URGENT!!! PLEASE HELP!!!!<br> In what kind of ecosystem can the population of a Leopard be found?
    13·1 answer
  • Waves from two slits are in phase at the slits and travel to a distant screen to produce the second minimum of the interference
    7·1 answer
  • A weightlifter lifts a set of 1250kg weights a vertical distance of 2m weight lifting contest. what potential energy do the weig
    12·1 answer
  • A cyclist turns a corner with a radius of 50m at a speed of 10m/s. What is the cyclist's acceleration?
    5·1 answer
  • Dr. Aloysius found four homogeneous mixtures, but he thinks that only three are alloys. He tests each one and determines their e
    5·2 answers
  • A student wishes to conduct an investigation on heat transfer that demonstrates convection, Which
    14·1 answer
  • A car traveling at 30 m/s speeds up to 35 m/s over a period of 5 seconds. What is the acceleration of the car?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!