Lindsay has to fly this plane towards this direction [W 12.5° S] to get to Hamilton.
From this question, the plane is still up in the air.
We have wind blowing in [W 60° N ]
To solve the problem we have to make use of the sine rule

We put the values in the equation, we have:
50/Sinθ = 200/sin60°
The next step is to cross multiply
50 x sin60° = 200Sinθ
50 x 0.8660 = 200sinθ
We make Sin θ the subject
Sine θ = 43.30/200
sine θ = 0.2165
we find the value of θ
θ = sine⁻¹(0.2165)
θ = 12.50
So Lindsay has to fly this plane towards this direction
[W 12.5° S]
Here is a similar question brainly.com/question/13338067?referrer=searchResults
Answer:
Velocity and speed both are continuously increasing.
Acceleration is constant.
Explanation:
Speed is defined as length of path covered by a body per unit time. Speed is a scalar quantity that consist of magnitude only and not direction.
Velocity is defined as the displacement per unit times. Displacement is the shortest distance between the two points. It is a vector quantity and hence has a direction in the direction of displacement along with its own magnitude.
- Both velocity and speed have same unit of measure which is meter per second in S.I. During <em>free fall</em> in the absence of any air resistance the velocity and speed both will be having a vertical downward direction with continuously increasing magnitude. Tough we are not concerned about the direction when discussing about speed but here both are equal since the motion is linear.
Acceleration is the rate of change in velocity of a body which is a vector quantity. For speed we are concerned about instantaneous acceleration since for a short period of time it may have a specific direction.
- During free fall the acceleration is of a body is equal to the acceleration due to gravity and constant when the height of fall is much lesser than the radius of the earth.
Q = C.v
v = Q/C
v = 4 × 10^(-10)/250
= 4 × 10^(-10)/2.5 × 10^2
= 1.6 × 10^(-12) volt
To answer that question, we don't care what the highest and lowest
levels of the wave are, or how far apart they are. We only need to be
able to identify the highest point on the wave, and keep track of how
often those pass by us.
You said it takes 4 seconds for a complete wave to pass by.
Through the sheer power of intellect, I'm able to take that information
and calculate that 1/4 of the wave passes by in 1 second.
There's your frequency . . . 1/4 per second, or 0.25 Hz.
Well the trivial answer is zero, since there is indeed a "zero vector". Assuming you aren't allowed to use the zero vector you would need at least two. They would be antiparallel and of equal magnitude. (That is be pointing in opposite directions and have the same length)