Answer:
Explanation:
Given that,
Initial angular velocity is 0
ωo=0rad/s
It has angular velocity of 11rev/sec
ωi=11rev/sec
1rev=2πrad
Then, wi=11rev/sec ×2πrad
wi=22πrad/sec
And after 30 revolution
θ=30revolution
θ=30×2πrad
θ=60πrad
Final angular velocity is
ωf=18rev/sec
ωf=18×2πrad/sec
ωf=36πrad/sec
a. Angular acceleration(α)
Then, angular acceleration is given as
wf²=wi²+2αθ
(36π)²=(22π)²+2α×60π
(36π)²-(22π)²=120πα
Then, 120πα = 8014.119
α=8014.119/120π
α=21.26 rad/s²
Let. convert to revolution /sec²
α=21.26/2π
α=3.38rev/sec
b. Time Taken to complete 30revolution
θ=60πrad
∆θ= ½(wf+wi)•t
60π=½(36π+22π)t
60π×2=58πt
Then, t=120π/58π
t=2.07seconds
c. Time to reach 11rev/sec
wf=wo+αt
22π=0+21.26t
22π=21.26t
Then, t=22π/21.26
t=3.251seconds
d. Number of revolution to get to 11rev/s
∆θ= ½(wf+wo)•t
∆θ= ½(0+11)•3.251
∆θ= ½(11)•3.251
∆θ= 17.88rev.
According to Newton, an object will only accelerate if there is a net or unbalanced forceacting upon it. The presence of an unbalanced force will accelerate an object - changing its speed, its direction, or both its speed and direction.
Answer:
≅50°
Explanation:
We have a bullet flying through the air with only gravity pulling it down, so let's use one of our kinematic equations:
Δx=V₀t+at²/2
And since we're using Δx, V₀ should really be the initial velocity in the x-direction. So:
Δx=(V₀cosθ)t+at²/2
Now luckily we are given everything we need to solve (or you found the info before posting here):
- Δx=760 m
- V₀=87 m/s
- t=13.6 s
- a=g=-9.8 m/s²; however, at 760 m, the acceleration of the bullet is 0 because it has already hit the ground at this point!
With that we can plug the values in to get:




If it is diamagnetic then it magnetise opposite to magnetic field
if paramagnetic it weekly magnetise in direction of magnetic field
if ferromagnetic it strongly magnetise in direction of magnetic field