Answer:
Magnitude of the average force exerted on the wall by the ball is 800N
Explanation:
Given
Contact Time = t = 0.05 seconds
Mass (of ball) = 0.80kg
Initial Velocity = u = 25m/s
Final Velocity = 25m/s
Magnitude of the average force exerted on the wall by the ball is given by;
F = ma
Where m = 0.8kg
a = Average Acceleration
a = (u + v)/t
a = (25 + 25)/0.05
a = 50/0.05
a = 1000m/s²
Average Force = Mass * Average Acceleration
Average Force = 0.8kg * 1000m/s²
Average Force = 800kgm/s²
Average Force = 800N
Hence, the magnitude of the average force exerted on the wall by the ball is 800N
(1) The harmonic number for the mode of oscillation is 3.
(2) The pitch (frequency) of the sound is 579.55 Hz
(3) The level of the water inside the vertical pipe is 0.1 m.
<h3>The harmonic number</h3>
The harmonic number for the mode of oscillation illustrated for the closed pipe is 3.
<h3>Frequency of the wave</h3>
The pitch (frequency) of the sound is calculated from third harmonic formula;
f = 3v/4L
where;
- v is speed of sound
- L is length of the pipe
f = (3 x 340) / (4 x 0.44)
f = 579.55 Hz
<h3>level of the water</h3>
wave equation for first harmonic of a closed pipe is given as
f = v/(4L)
251.1 = 340/(4L)
4L = 340/251.1
4L = 1.35
L = 1.35/4
L = 0.34 m
level of water = 0.44 m - 0.34 m = 0.1 m
Thus, the level of the water inside the vertical pipe is 0.1 m.
Learn more about harmonics of closed pipes here: brainly.com/question/27248821
#SPJ1
Answer:
If the canoe heads upstream the speed is zero. And directly across the river is 8.48 [km/h] towards southeast
Explanation:
When the canoe moves upstream, it is moving in the opposite direction of the normal river current. Since the velocities are vector (magnitude and direction) we can sum each vector:
Vr = velocity of the river = 6[km/h}
Vc = velocity of the canoe = -6 [km/h]
We take the direction of the river as positive, therefore other velocity in the opposite direction will be negative.
Vt = Vr + Vc = 6 - 6 = 0 [km/h]
For the second question, we need to make a sketch of the canoe and we are watching this movement at a high elevation. So let's say that the canoe is located in point 0 where it is located one of the river's borders.
So we are having one movement to the right (x-direction). And the movement of the river to the south ( - y-direction).
Since the velocities are vector we can sum each vector, so using the Pythagoras theorem we have:
![Vt = \sqrt{(6)^{2} +(-6)^{2} } \\Vt=8.48[km/h]](https://tex.z-dn.net/?f=Vt%20%3D%20%5Csqrt%7B%286%29%5E%7B2%7D%20%2B%28-6%29%5E%7B2%7D%20%7D%20%5C%5CVt%3D8.48%5Bkm%2Fh%5D)