This question needs research to be answered. From the given information alone it can't be answered without making wild assumptions.
Ideally, you need to take a look at a distribution (or a histogram) of asteroid diameters, identify the "mode" of such a distribution, and find the corresponding diameter. That value will be the answer.
I am attaching one such histogram on asteroid diameters from the IRAS asteroid catalog I could find online. (In order to get a single histogram, you need to add the individual curves in the figure first). Eyeballing this sample, I'd say the mode is somewhere around 10km, so the answer would be: the diameter of most asteroid from the IRAS asteroid catalog is about 10km.
Answer:
find the sum of the inital and final velocitys and divide by 2 to find the average
Answer: Improvement Invention means any CCIA Invention and CCIA's rights as a joint owner in a Joint Invention that is sufficiently different from the scope of a Licensed Patent to be separately patentable, and covered by the claims of Licensed Patents.
Answer:
the frequency of the second harmonic of the pipe is 425 Hz
Explanation:
Given;
length of the open pipe, L = 0.8 m
velocity of sound, v = 340 m/s
The wavelength of the second harmonic is calculated as follows;
L = A ---> N + N--->N + N--->A
where;
L is the length of the pipe in the second harmonic
A represents antinode of the wave
N represents the node of the wave

The frequency is calculated as follows;

Therefore, the frequency of the second harmonic of the pipe is 425 Hz.
Force=mass*acceleration
F=ma
F=25*5
F=100 N