I got you b, V(final)^2=V(initial+2acceleration*displacement
So this turns to (0m/s)^2=(50m/s)^2+2(9.8)(d) so just flip it all around to isolate d so you get
-(50m/s)^2/2(9.8) = d so you get roughly 12.7555 meters up
<span>Assuming continuous operation (24/7), we can say that
Energy produced : Energy per hour * 24 (number of hours in a day) - 365 (number of days in a year.
Energy per hour: 2050 * 1.055 = 2162.75 kg.
So, we proceed to calculate the results
E: 2162.75 * 24 * 365 = 18,945,690 kj per year.
Now, we transform kj to megajoule, remembering that kilo is 10*3 and mega is 1'*6, so we divide the result by 1,000 in order to get the results in megajoules, and the answer would be:
18,945.69 megajoules can be produced per year.</span>
Answer:
You could put over six planets the size of Mars inside the Earth. The largest planet in our Solar System, Jupiter's size is astounding. Jupiter has a volume of 1.43 x 1015 cubic kilometers. To show what this number means, you could fit 1321 Earths inside of Jupiter
Explanation:
Answer:
the magnitude of the average contact force exerted on the leg is 3466.98 N
Explanation:
Given the data in the question;
Initial velocity of hand v₀ = 5.25 m/s
final velocity of hand v = 0 m/s
time interval t = 2.65 ms = 0.00265 s
mass of hand m = 1.75 kg
We calculate force on the hand F
using equation for impulse in momentum
F
× t = m( v - v₀ )
we substitute
F
× 0.00265 = 1.75( 0 - 5.25 )
F
× 0.00265 = 1.75( - 5.25 )
F
× 0.00265 = -9.1875
F
= -9.1875 / 0.00265
F
= -3466.98 N
Next we determine force on the leg F
Using Newton's third law of motion
for every action, there is an equal opposite reaction;
so, F
= - F
we substitute
F
= - ( -3466.98 N )
F
= 3466.98 N
Therefore, the magnitude of the average contact force exerted on the leg is 3466.98 N
Answer:
Displacement: 6.71 m, Direction: 63.4 degrees north of east
Explanation:
In the attached image we can aprecciate each one of the movements of the parade. Let's say that the parade started from the origin (point (0,0)) then it moves to the east 4 blocks it means now the parade is located at point (4,0).
Then the parade went to the south three blocks, so it moves to the coordinate (4,-3). After this the parade went to the west one block so the new coordinate point is (3, -3).
And finally the movement of the 0 parade was 9 blocks to the north. It means the final point is now (0,9) - (3,-3) = (3,6)
And the displacement will be defined by the folliwing vector operation:

We know that the magnitude of the displacement vector is defined by the phytagoras theorem

And the angle will be defined by:
tan(beta)=3/6
beta = tan^-1(6/3)
beta = 63.43°