1 kg ball can have more kinetic energy than a 100 kg ball as increase in velocity is having greater impact on K.E than increase in mass.
<u>Explanation</u>:
We know kinetic energy can be judged or calculated by two parameters only which is mass and velocity. As kinetic energy is directly proportional to the
and increase in velocity leads to greater effect on translational Kinetic Energy. Here formula of Kinetic Energy suggests that doubling the mass will double its K.E but doubling velocity will quadruple its velocity:

Better understood from numerical example as given:
If a man A having weight 50 kg run with speed 5 m/s and another man B having 100 kg weight run with 2.5 m / s. Which man will have more K.E?
This can be solved as follows:


It shows that man A will have more K.E.
Hence 1 kg ball can have more K.E than 100 kg ball by doubling velocity.
Have a universal record base. Everyone is able to understand the data compiled since the same measurement systems are being used around the world. This is just to simplify all of the information.
Answer:
1.72 x 10³ N.
Explanation:
When a charge is split equally and placed at a certain distance , maximum electrostatic force is possible.
So the charges will be each equal to
31/2 = 15.5 x 10⁻⁶ C
F = K Q q / r²
= 
= 1.72 x 10³ N.
C, planets orbit around the sun because of gravity
Answer: physical or mechanical weathering
Explanation:
Mechanical weathering which is also referred to as the physical weathering occurs when a rock is broken down into smaller pieces. In this case, there will be a physical change of the rock but its composition will not change.
Some examples include ice freezing and expansion of the cracks in the rock, Smstrong winds that carrycpieces of sand which then sandblast surfaces, moving water which causes abrasion etc.