Answer:
Physically, the gas constant is the constant of proportionality that relates the energy scale in physics to the temperature scale, when a mole of particles at the stated temperature is being considered. Thus, the value of the gas constant ultimately derives from historical decisions and accidents in the setting of the energy and temperature scales, plus similar historical setting of the value of the molar scale used for the counting of particles.
Explanation:
Pa follow
Answer:
A) some of the rocks energy is transformed to thermal energy
Explanation:
If we neglect air resistance during the fall of the rock, than the mechanical energy of the rock (which is sum of its potential energy and its kinetic energy) would be constant during the entire motion, so the total energy of the rock at the top would be the same as the sum of its potential energy and kinetic energy at the bottom.
However, this not occurs, due to the presence of air resistance. In fact, air resistance acts against the fall of the rock, and because of the friction between the molecules of air and the surface of the rock, the rock loses part of its energy. This energy is converted into thermal energy of the molecules of the air.
#1). Anthony does the same amount of work as Angel, with <em>more power</em>.
#2). Power = (Work)/(Time) = 41,000 J / 500 s = <em>82 watts .</em>
#3). Power = (Work) / (Time) = 83 J / 3 sec = <em>27.7 watts</em>
Really, Gundy ? ! ?
The formula for the car's speed is given and discussed in the box. The formula is
v = √(2·g·μ·d)
Then they <em>tell</em> you that μ is 0.750 , and then they <em>tell</em> you that d = 52.9 m . Also, everybody knows that 'g' is gravity = 9.8 m/s² .
They also tell us that the mass of the car is 1,000 kg, and they tell us that it took 3.8 seconds to skid to a stop. But we already <em>have</em> all the numbers in the formula <em>without</em> knowing the car's mass or how long it took to stop. The police don't need to weigh the car, and nobody was there to measure how long the car took to stop. All they need is the length of the skid mark, which they can measure, and they'll know how fast the guy was going when he hit the brakes !
Now, can you take the numbers and plug them into the formula ? ! ?
v = √(2·g·μ·d)
v = √( 2 · 9.8 m/s² · 0.75 · 52.9 m)
v = √( 777.63 m²/s²)
v = 27.886 m/s
Rounded to 3 digits, that's <em>27.9 m/s </em>.
That's about 62.4 mile/hour .