1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Strike441 [17]
3 years ago
9

For the following question, two statements are given- one labelled Assertion (A) and the other labelled Reason (R). Select the c

orrect answer to these questions from the codes (i), (ii), (iii) and (iv) as given below. i) Both A and R are true and R is correct explanation of the assertion. ii) Both A and R are true but R is not the correct explanation of the assertion. iii) A is true but R is false. iv)A is false but R is true. Assertion: Concave mirrors are used as reflectors in torches, vehicle head-lights and in search lights. Reason: When the object is placed beyond the centre of curvature of a concave mirror, the image formed is real and inverted.
please help

Physics
1 answer:
AleksandrR [38]3 years ago
5 0

Answer:

assertion is true but the reason is not true

Explanation:

You might be interested in
Describe how wavelength, frequency, and energy are related.
irina1246 [14]
The greater the energy, the larger the frequency and the shorter (smaller) the wavelength. Given the relationship between wavelength and frequency — the higher the frequency, the shorter the wavelength — it follows that short wavelengths are more energetic than long wavelengths.
4 0
3 years ago
I need help so bad pls pls help
erastovalidia [21]

Answer:

I think it is protection

6 0
2 years ago
Read 2 more answers
"Two uniform identical solid spherical balls each of mass M and radius R" and moment of inertia about its center 2/5 MR2 are rel
adelina 88 [10]

Answer:

he sphere that uses less time is sphere A

Explanation:

Let's start with ball A, for this let's use the kinematics relations

        v² = v₀² - 2g (y-y₀)

indicate that the sphere is released therefore its initial velocity is zero and when it reaches the floor its height is zero y = 0

         v² = 0 - 2 g (0- y₀)

         v = \sqrt{2g y_o}

         v = \sqrt{2 \ 9.8\ H}

         v = 4.427 √H

Now let's work the sphere B, in this case it rolls down a ramp, let's use the conservation of energy

starting point. At the highest point, before you start to move

         Em₀ = U = m g y

final point. At the bottom of the ramp

         Em_f = K = ½ m v² + ½ I w²

notice that we include the kinetic energy of translation and rotation

energy is conserved

          Em₀ = Em_f

          mg H = ½ m v² + ½ I w²

angular and linear velocity are related

          v = w r

          w = v / r

the momentorot of inertia indicates that it is worth

          I = \frac{2}{5} m r²

we substitute

           m g H = ½ m v² + ½ (\frac{2}{5}  m r²) (\frac{v}{r} )²

           gH = \frac{1}{2}  v² + \frac{1}{5}  v² = \frac{7}{10}  v²

           v = \sqrt{\frac{10}{7} \ g H}

           v = \sqrt{ \frac{10}{7}  \ 9.8 \ H}

           v=3.742 √H

Taking the final speeds of the sphere, let's analyze the distance traveled, sphere A falls into the air, so the distance traveled is H.  The ball B rolls in a plane, so the distance (L) traveled can be found with trigonometry

           sin θ = H / L

           L = H /sin θ

we can see that L> H

In summary, ball A arrives with more speed and travels a shorter distance, therefore it must use a shorter time

Consequently the sphere that uses less time is sphere A

5 0
3 years ago
An uncharged series RC circuit is to be connected across a battery. For each of the following changes, determine whether the tim
slavikrds [6]

a) Increase

b) Unchanged

c) Increase

Explanation:

a)

The charge on a capacitor charging in a RC circuit connected to a battery follows the exponential equation:

Q(t)=Q_0 (1-e^{-\frac{t}{RC}})

where

Q_0 = CV is the final charge stored in the capacitor, where C is the capacitance and V is the voltage of the battery

t is the time

R is the resistance of the circuit

The capacitor reaches 90% of its final charge when

Q(t)=0.90Q_0

Substituting and re-arranging the equation, we find:

0.90Q_0 = Q_0(1-e^{-\frac{t}{RC}})\\0.90=1-e^{-\frac{t}{RC}}\\e^{-\frac{t}{RC}}=0.10\\-\frac{t}{RC}=ln(0.10)\\t=-RCln(0.10)=2.30RC

We see that if we double the RC constant, then (RC)'=2(RC)

So the time taken will double as well:

t'=2.30(RC)'=2.30(2RC)=2(2.30RC)=2t

So, the answer is "increase"

b)

In this second part, the battery voltage is doubled.

According to the equation written in part a),

Q_0 =CV

this means also that the final charge stored on the capacitor will also double.

However, the equation that gives us the time needed for the capacitor to reach 90% of its full charge is

t=2.30 RC

We see that this equation does not depend at all on the voltage of the battery.

Therefore, if the battery voltage is doubled, the final charge on the capacitor will double as well, but the time needed for the capacitor to reach 90% of its charge will not change.

So the correct answer is

"unchanged"

c)

In this case, a second resistor is added in series with the original resistor of the circuit.

We know that for two resistors in series, the total resistance of the circuit is given by the sum of the individual resistances:

R=R_1+R_2

Since each resistance is a positive value, this means that as we add new resistors, the total resistance of the circuit increases.

Therefore in this problem, if we add a resistor in series to the original circuit, this means that the total resistance of the circuit will increase.

The time taken for the capacitor to reach 90% of its final charge is still

t=2.30 RC

As we can see, this time is directly proportional to the resistance of the circuit, R: therefore, if we add a resistor in series, the resistance of the circuit will increase, and therefore this time will increase as well.

So the correct answer is

"increase"

8 0
3 years ago
A geneticist looks through a microscope to determine the phenotype of a fruit fly. The microscope is set to an overall magnifica
guajiro [1.7K]

Answer:

f_{e} = 1.7 cm

Explanation:

The magnification of the compound microscope is given by the product of the magnification of each lens

        M = M₀ m_{e}

        M = - L/f₀  25/f_{e}

Where f₀ and f_{e} are the focal lengths of the lens and eyepiece, respectively, all values ​​in centimeters

In this exercise they give us the magnification (M = 400X), the focal length of the lens (f₀ = 0.6 cm), the distance of the tube (L = 16 cm), let's look for the focal length of the eyepiece (f_{e})

         f_{e} = - L / f₀ 25 / M

Let's calculate

        f_{e} = - 16 / 0.6 25 / (-400)

        f_{e} = 1.67 cm

The minus sign in the magnification is because the image is inverted.

          f_{e} = 1.7 cm

6 0
3 years ago
Other questions:
  • The velocity of waves in a ripple tank is 20 centimeters per second, and standing waves are produced with nodes spaced 3.0 centi
    8·1 answer
  • A baseball pitcher brings his arm forward during a pitch, rotating the forearm about the elbow. If the velocity of the ball in t
    14·1 answer
  • If an astronaut has a mass of 112 kg, what is his weight on Earth where the acceleration due to gravity is 9.8m/s2?
    5·1 answer
  • Moon does not have atmosphere as we have on Earth. On the earth, you can see the ground in someone’s shadow; on the moon, you ca
    10·1 answer
  • Electromagnetic radiation can be specified by its wavelength ( ), its frequency ( ) or its period ( ). The period is the time it
    9·1 answer
  • Is length a <br> vector,<br> scalar<br> ,both,<br> neither
    15·1 answer
  • An element’s __________ is its row in the periodic table.
    8·1 answer
  • Q010) A well in which the water rises on its own to a level above its aquifer Group of answer choices is the result of pressure
    8·1 answer
  • How much heat energy is required to raise the temperature of 1 kilogram of steel by 10°C?
    7·1 answer
  • a balloon of total mass 2200 kg hovers stationary at a height of several meters above the ground. a mass of 200 kg is released f
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!