First, we calculate the mass of the sample:
mass = density x volume
mass = 8.48 x 112.5
mass = 954 grams
Now, we will calculate the mass of each component using its percentage mass, then divide it by its atomic mass to find the moles and finally multiply the number of moles by the number of particles in a mole, that is, 6.02 x 10²³.
Zinc mass = 0.37 x 954
Zinc mass = 352.98 g
Zinc moles = 352.98 / 65
Zinc moles = 5.43
Zinc atoms = 5.43 x 6.02 x 10²³
Zinc atoms = 3.27 x 10²⁴
Copper mass = 0.63 x 954
Copper mass = 601.02 g
Copper moles = 601.02 / 64
Copper moles = 9.39
Copper atoms = 9.39 x 6.02 x 10²³
Copper atoms = 5.56 x 10²⁴
Answer: A hydrogen bonding is interaction between lone pair and hydrogen atom. An Ion-Dipole interaction is the interaction between an ion formed and a dipole. Dipole forms because of the electronegativity difference between two atom participating in the bond formation, and an ion is formed when an atom gains or lose electron. This ion-dipole interaction is strongest interaction.
Therefore, The right choice is (B)
The answer is C as it slowly destroys the ozone layer
Longitudinal waves. In a longitudinal wave the particles in the medium move parallel to the direction waves go. A good example can be the p-waves in an earthquake.
Answer:
6amu
Explanation:
mass=proton+neutron
mass of cl2=2(16+16)=64amu