Answer: A) Inconclusive; you would not know which of the two variables caused the change.
Explanation:
When you set up an experiment, you must make sure that you control the variables such that only one independent variable changes at a time, while all the remainder conditions (the other independent variables) are controlled (fixed).
By observing (measuring) the dependent variable, while only one independent variable changes you can understandhow such independent variable explains (determines) the dependent variable, leading to a conclusion.
Conversely, if two or more independent variables change at a time, then there is no way that you can tell how the output (dependent variable) is related with one or other of the changes of the indipendent variables. You wolud not be able to discriminate (distinguish) the effect of one or other variable, making the experiment inconclusive
I really hope this answer helps you out! It makes my day helping people like you and giving back to the community that has helped me through school! If you could do me a favor, if this helped you and this is the very best answer and you understand that all of my answers are legit and top notch. Please mark as brainliest! Thanks and have a awesome day!
The answers would be organisms in water, water, and air.
Kepler's
third law shows the relationship between the orbital period of an object and
the distance between the object and the object it orbits.
The
simplified version of this law is: P^2 = a^3
Where,
P =
period of the orbit in years = 0.62 years
a =
average distance from the object to the object it orbits in AU. The
astronomical unit AU is a unit of length which is roughly equivalent to the
distance from Earth to the Sun.
Therefore
calculating for a:
0.62
^ 2 = a ^ 3
a =
0.62 ^ (2/3)
a =
0.727 AU = 0.72 AU
Therefore we can interpret this as: The distance from Venus to the Sun is about 72% of the distance from Earth to
Sun.
<span>Answer:
B. 0.72 AU</span>