Answer: 25%
Explanation: According to the Florida Industrial and Phosphate Research Institute, Florida’s phosphate mining accounts for about 75% of the phosphate used in the United States, as well as about 25% phosphate used around the world. Although first mined in England in 1847, and used as fertilizer, In 1881, a civilian employee, J Francis Le Baron discovered Phosphate pebbles in peace river, and then, a hard rock phosphate district was discovered in north central Florida after that which began the Phosphate mining industry in Florida. Phosphorus rock supplies the phosphorus element in the fertilizer mix of nitrogen-phosphorus-potassium that is used as fertilizer to aid in growth of plants.
<u>Answer:</u> The cell potential of the cell is +0.118 V
<u>Explanation:</u>
The half reactions for the cell is:
<u>Oxidation half reaction (anode):</u> 
<u>Reduction half reaction (cathode):</u> 
In this case, the cathode and anode both are same. So,
will be equal to zero.
To calculate cell potential of the cell, we use the equation given by Nernst, which is:
![E_{cell}=E^o_{cell}-\frac{0.0592}{n}\log \frac{[Ni^{2+}_{diluted}]}{[Ni^{2+}_{concentrated}]}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B0.0592%7D%7Bn%7D%5Clog%20%5Cfrac%7B%5BNi%5E%7B2%2B%7D_%7Bdiluted%7D%5D%7D%7B%5BNi%5E%7B2%2B%7D_%7Bconcentrated%7D%5D%7D)
where,
n = number of electrons in oxidation-reduction reaction = 2
= ?
= 
= 1.0 M
Putting values in above equation, we get:


Hence, the cell potential of the cell is +0.118 V
Answer:
Explanation:
1. To identify what's been oxidised and what's been reduced in a redox reaction
2. In naming compounds
3. To work out reacting proportions in titration reactions