Answer:
Explanation:
A plane flies due north (90° from east) with a velocity of 100 km/h for 2 hours.
With no wind, it will be 100*2 = 200 km north of its starting point.
But a steady wind blows southeast at 30 km/h at an angle of 315° from due east.
So the wind itself will blow the plane 30*2 = 60km at an angle of 315° from due east.
That is the same as 60*cos315° = 42.43km due east and 60*sin315° = -42.43km north.
Combining, the plane is at 42.43km due east and 200-42.43 = 157.57km due north from its starting point.
Explanation:
In recent times of pandemic, robots can be use as replacement of labor in the industries. Mundane tasks can be programmed in their system so that they can used readily.
Drones can used delivery for essential goods and services, so that human interference can be least and the spread of virus can be curbed.
In a recent example, Argentina where aerial data has reportedly been used to accelerate the construction of emergency hospitals.
The coefficient of linear expansion, given that the length of the pipe increased by 1.5 cm is 1.67×10¯⁵ /°F
<h3>How to determine the coefficient of linear expansion</h3>
From the question given above, the following data were obtained
- Original diameter (L₁) = 10 m
- Change in length (∆L) = 1.5 cm = 1.5 / 100 = 0.015 m
- Change in temperature (∆T) = 90 °F
- Coefficient of linear expansion (α) =?
The coefficient of linear expansion can be obtained as illustrated below:
α = ∆L / L₁∆T
α = 0.015 / (10 × 90)
α = 0.015 / 900
α = 1.67×10¯⁵ /°F
Thus, we can conclude that the coefficient of linear expansion is 1.67×10¯⁵ /°F
Learn more about coefficient of linear expansion:
brainly.com/question/28293570
#SPJ1
The angular speed of the device is 1.03 rad/s.
<h3>What is the conservation of angular momentum?</h3>
A spinning system's ability to conserve angular momentum ensures that its spin will not change until it is subjected to an external torque; to put it another way, the rotation's speed will not change as long as the net torque is zero.
Using the conservation of angular momentum

Here, = the system's angular momentum before the collision
= 0 + mv
= (0.005)(450)(0.752)
= 1.692 kgm²/s
The moment of inertia of the system is given by
I = 2(M₁R₁² + M₂R₂²)+ mR₁²
= 2[(1.2)(0.8)² +(0.5)(0.3)²]+0.005(0.8)²
= 1.6292 kgm²
Here, = Iω
So,
1.692 = 1.6292(ω)
ω = 1.03 rad/s
To know more about the conservation of angular momentum, visit:
brainly.com/question/1597483
#SPJ1
When the grasshoppers vertical velocity is exactly zero.
v = -g•t + v0.
v: vertical part of velocity. Is zero at maximum height.
g: 9.81
t: time you are looking for
v0: initial vertical velocity
Find the vertical part of the initial velocity, by using the angle at which the grasshopper jumps.