Explanation:
Check out the picture I drew for a minute before reading this...
B. Distance [the red line] is a scalar quantity reflecting how far an object has traveled. Displacement [the green line] is a vector quantity reflecting how far an object has moved from a point. The key difference is that distance can be any sort of path while displacement is always a vector (or a straight line) between a starting point and a finishing point. Sometimes distance and displacement are equal to one another. Sometimes you have a distance traveled, but zero displacement overall; which is what's going on in your question.
A. The distance that the racecar traveled is indeed 500m. But at the end of the lap, it is right back where it started. So overall, it has been displaced 0m.
Answer:
Option B
Explanation:
Gravitational force is a force that attracts two bodies (with a mass) towards each other. If an object has a higher mass, the gravitational pull will be greater.
According to Newton’s inverse square law:
<em>"The gravitational force is inversely proportional to the square of the distance between two bodies."</em>
About this question, the greater the distance between two gravitating bodies, the weaker is the gravitational force between them.
ANSWER:
The easiest way to get a fairly accurate measure of your water flow rate is to time yourself filling up a bucket. So for example if you fill up a 10 litre bucket in 1.5 minutes, then your flow rate will be: 10/1.5 = 6.66 Litres per minute.
The correct answer is:
<span>C) The actual frequency of the siren does not change despite appearances.
In fact, Bob will observe an increase in the apparent frequency as the emergency vehicle approaches him, while Jill will observe a decrease in the apparent frequency as the emergency vehicle moves away from him, because of the Doppler effect (the relative velocity between the observer and the source of the sound is changing), but this effect involves the apparent frequency, while the real frequency of the siren will remain the same.</span>