The diameter of the column of the water as it hits the bucket is 4.04 cm
The equation of continuity occurs in the fluid system and it asserts that the inflow and the outflow of the volume rate at the inlet and at the outlet of the system are equal.
By using the kinematics equation to determine the speed of the water in the bucket and applying the equation of continuity to estimate the diameter of the column, we have the following;
Using the kinematics equation:




From the equation of continuity:







Since diameter = 2r;
∴
The diameter of the column of the water is:
= 2(2.02) cm
= 4.04 cm
Learn more about the equation of continuity here:
brainly.com/question/10822213
Answer:
35 mph
Explanation:
The key of this problem lies in understanding the way that projectile motion works as we are told to neglect the height of the javelin thrower and wind resistance.
When the javelin is thown, its velocity will have two components: a x component and a y component. The only acceleration that will interact with the javelin after it was thown will be the gravety, which has a -y direction. This means that the x component of the velocity will remain constant, and only the y component will be affected, and can be described with the constant acceleration motion properties.
When an object that moves in constant acceleration motion, the time neccesary for it to desaccelerate from a velocity v to 0, will be the same to accelerate the object from 0 to v. And the distance that the object will travel in both desaceleration and acceleration will be exactly the same.
So, when the javelin its thrown, it willgo up until its velocity in the y component reaches 0. Then it will go down, and it will reach reach the ground in the same amount of time it took to go up and, therefore, with the same velocity.
Electric force from electomagnetic force and force of gravity from gravitational force
We must know that the gravity acceleration on Jupyter is g = 24.79 m/s² , on the Earth g = 9.8 m/s² and on the moon 1.62 m/s².
The weigh of an object is given by:
P = mg
Solving for m:
m = P/g
We see that for the same weight, if gravity is less, then the amount of mass is greater, because they are inversely proportional. So we conclude that the answer is:
<h2>a 3-N bowl of ice cream on the moon </h2>