Answer:
B
Explanation:
The impulse experienced by an object is the force•time.
Answer:
A boxed 14.0 kg computer monitor is dragged by friction 5.50 m up along the moving surface of a conveyor belt inclined at an angle of 36.9 ∘ above the horizontal. The monitor's speed is a constant 2.30 cm/s.
how much work is done on the monitor by (a) friction, (b) gravity
work(friction) = 453.5J
work(gravity) = -453.5J
Explanation:
Given that,
mass = 14kg
displacement length = 5.50m
displacement angle = 36.9°
velocity = 2.30cm/s
F = ma
work(friction) = mgsinθ .displacement
= (14) (9.81) (5.5sin36.9°)
= 453.5J
work(gravity)
= the influence of gravity oppose the motion of the box and can be pushing down, on the box from and angle of (36.9° + 90°)
= 126.9°
work(gravity) = (14) (9.81) (5.5cos126.9°)
= -453.5J
Answer:
Explanation:
To find Sammy's course you have to add the two velocities (vectors), 18 mph 327º and 4 mph 60º.
To add the two vectors analytically you decompose each vector into their vertical and horizontal components.
<u>1. 18 mph 327º</u>
- Horizontal component: 18 mph × cos (327º) = 15.10 mph
- Vertical component: 18 mph × sin (327º) = - 9.80 mph

<u>2. 4 mph 60º</u>
- Horizontal component: 4 mph × cos (60º) = 2.00 mph
- Vertical component: 4 mph × sin (60º) = 3.46 mph

<u>3. Addition:</u>
You add the corresponding components:

To find the magnitude use Pythagorean theorem:
<u>4. Direction:</u>
Use the tangent ratio:
Find the inverse:
Answer:
C. it will not change.
Explanation:
While combing, the rubbing of the comb with the hair, transfer of electron takes place from the hair to the comb and the comb becomes negatively charged. But, this transfer of electron does not make any considerable change in the mass of the hair. This is because the mass of an electron is highly negligible. Now, neglecting the mass of an electron, the transfer of the electrons from the hair to the comb makes charging of the comb, but no loss of mass in the hair. So, the mass of hair will no change.
Exert force upward.
Like when you pick something up from the floor, or walk up the stairs.