The green wavelengths are reflected, causing green to be the only color we see in certain parts of plants.
Best of luck, my man.
Answer:
<em>the ball travels a distance of 8.84 m</em>
Explanation:
Range: Range is defined as the horizontal distance from the point of projection to the point where the projectile hits the projection plane again.
R = (U²sin2∅)/g.............................. Equation 1
Where R = range, U = initial velocity, ∅ = angle of projection, g = acceleration due to gravity.
<em>Given: U = 10 m/s, ∅ = 60°</em>
<em>Constant: g = 9.8 m/s²</em>
Substituting these values into equation 1
R = [10²×sin(2×60)]/9.8
R = (100sin120)/9.8
R = 100×0.8660/9.8
R = 86.60/9.8
R = 8.84 m
<em>Therefore the ball travels a distance of 8.84 m</em>
<span>Answer:
Well, let's start by finding the pressure due to the "extra" height of the mercury.
p = 1.36e4 kg/m³ · (0.105m - 0.05m) · 9.8m/s² = 7330 N/m² = 7330 Pa
The pressure at B is clearly p_b = p_atmos = p_gas + 7330 Pa
The pressure at A is p_a = p_gas = p_atmos - 7330 Pa
c) 1 atm = 101 325 Pa
Then p_gas = 101325 Pa - 7330 Pa = 93 995 Pa</span>