Answer:
2s2 2p5
Rb < Sr< Sn< Te<I
Explanation:
Electron affinity is the ability of an atom to accept electrons to form negative ions.
Electron affinity is a periodic trend that decreases down the group but increases across the period.
This accounts for the trends observed in the answer. The atom having the electronic configuration, 2s2 2p5 must be a halogen and it exhibits the highest value of electron affinity.
Also, since electron affinity increases across the period, the electron affinities of the elements increases. Therefore, the arrangement of atoms as shown in the answer depends on increasing electron affinity.
Answer:
53.3 %.
Explanation: C2H4O2. = 2 * 12.011 + 4 * 1.008 + 2 * 15.999. = 60.052.
277.79 atm is the calculated gas pressure.
The ideal gas is a fictitious concept used to study how real gases behave by comparing them to their deviations. The pressure-temperature rules are followed by an ideal gas.
177 atm is the initial pressure. The starting temperature is 298 K (25 °C = 25 + 273 °C).
195°C = 195+273
= 468K is the final temperature.
The pressure temperature relation illustrated below can be used to get the final pressure.
P1/T1 = P2/T1
= P1T2/T1
= 177 atm 468 K /298 K
= 277.97 atm
The final pressure is therefore 277.97 atm.
Learn more about Pressure here-
brainly.com/question/4578923
#SPJ4
Answer: Electrical energy is defined as an electric charge that lets work be accomplished. An example of electrical energy is power from a plug outlet. YourDictionary definition and usage example.
Explanation:
Answer:
78.3 × 10²³ atoms of helium are present in 52 g.
Explanation:
Given data:
Mass of He = 52 g
Number of atoms = ?
Solution:
First of all we will calculate the number of moles of He
Number of moles = mass /molar mass
Number of moles = 52 g/ 4 g/mol
Number of moles = 13 mol
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
1 mole = 6.022 × 10²³ atoms of helium
13 mol × 6.022 × 10²³ atoms of helium / 1 mole
78.3 × 10²³ atoms of helium