<u>Answer:</u> The equilibrium concentration of bromine gas is 0.00135 M
<u>Explanation:</u>
We are given:
Initial concentration of chlorine gas = 0.0300 M
Initial concentration of bromine monochlorine = 0.0200 M
For the given chemical equation:

<u>Initial:</u> 0.02 0.03
<u>At eqllm:</u> 0.02-2x x 0.03+x
The expression of
for above equation follows:
![K_c=\frac{[Br_2]\times [Cl_2]}{[BrCl]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BBr_2%5D%5Ctimes%20%5BCl_2%5D%7D%7B%5BBrCl%5D%5E2%7D)
We are given:

Putting values in above equation, we get:

Neglecting the value of x = -0.96 because, concentration cannot be negative
So, equilibrium concentration of bromine gas = x = 0.00135 M
Hence, the equilibrium concentration of bromine gas is 0.00135 M
Answer: Mixtures you can separate are like cereal and milk. Hope that helps
Explanation: Filteration is required to separate a mixture.
So heterogeneous mixures (that contain substances with different particle sizes) can be separated with a filter.
Homogeneous mixtures are uniform in composition so they will not be able to be separated.
Lower fertility and longer lifespans steadily increased the potential labor force relative to the total population
Answer: The capillary rise(h) in the glass tube is = 0.009m
Explanation:
Using the equation
h = 2Tcosθ/rpg
Given
Contact angle, θ = Zero
h = height of the glass tube=?
T = surface tension = 
r = radius of the tube = 0.1mm =0.0001m
p= density of ethanol = 
g= 
h = 
h= 0.09m
Therefore the capillary rise in the tube is 0.09m
When an oxygen atom is attached to a carbon atom, the carbon atom becomes reduced.