Balanced chemical equation for the reaction is:
2S
(g) +
(g)+ 2
O (l) ⇒
Moles of
formed is 5.75 moles.
Moles of oxygen used is 5.75 moles in the reaction.
Explanation:
Data given:
moles of S
= 11.5 moles
moles of
= ?
Moles of
needed =?
balanced equation with states of matter =?
Balanced chemical reaction under STP condition is given as:
2S
(g) +
(g) + 2
O (l) ⇒
From the balanced reaction 2 moles of sulphur dioxide reacted to form 1 mole of sulphuric acid:
so, from 11.5 moles of S
, x moles of
is formed

2x = 11.5
x = 5.75 moles of sulphuric acid formed.
From the balanced reaction 1 mole of oxygen reacted to form 1 mole of sulphuric acid.
when 11.5 moles of Sulphur dioxide reacted then oxygen in the reaction is 5.75 moles.
Answer:
A. absorbs light
Explanation:
For an electron to move from a lower energy level to a higher energy level, energy needs to be added to the atom.
In most cases this required energy will be light: The electron of the atom will absorb the energy of the light and move to a higher energy level.
When said electron comes back to the lower energy level, the atom will conversely give off light.
the first is hydroxide. I believe d is the second one but I'm not 100% positive so you may want to get a second opinion
Answer: There are 20 protons neutrons in the atom
The new pressure : P₂ = 1038.39 mmHg
<h3>Further explanation</h3>
Given
1.5 L container at STP
Heated to 100 °C
Required
The new pressure
Solution
Conditions at T 0 ° C and P 1 atm are stated by STP (Standard Temperature and Pressure).
So P₁ = 1 atm = 760 mmHg
T₁ = 273 K
T₂ = 100 °C+273 = 373 K
Gay Lussac's Law
When the volume is not changed, the gas pressure is proportional to its absolute temperature

Input the value :
P₂=(P₁.T₂)/T₁
P₂=(760 x 373)/273
P₂ = 1038.39 mmHg