Answer: 3.01 x 10^24 atoms
Explanation:
Based on Avogadro's law:
1 mole of any substance has 6.02 x 10^23 atoms
So, 1 mole of water = 6.02 x 10^23 atoms
5 moles of water = Z atoms
To get the value of Z, cross multiply
Z x 1 mole = (6.02 x 10^23 atoms x 5 moles)
Z•mole = 30.1 x 10^23 atoms•mole
Divide both sides by 1 mole
Z•mole/1 mole = 30.1 x 10^23 atoms•mole/ 1 mole
Z = 30.1 x 10^23 atoms
[Place the value of Z in standard form]
Z = 3.01 x 10^24 atoms
Thus, there are 3.01 x 10^24 atoms in 5 mole of water
Answer: i think the best bet i can give you is Option C (2:3)
Explanation: i apologize i haven't done chem in 2 years
but however to put it in retrospect the finished equation is 2(AL)^+3 3(O)^-2
Answer:
<em> ionic equation : </em>3Fe(2+)(aq) + 3SO4(2-)(aq)+ 6Na(+)(aq) + 2PO4 (3-) (aq) → Fe3(PO4)2(s)+ 6Na(+) + 3SO4(2-)(aq)
<em> net ionic equation: </em>3Fe(2+)(aq) + 2PO4 (3-)(aq) → Fe3(PO4)2(s)
Explanation:
The balanced equation is
3FeSO4(aq)+ 2Na3PO4(aq) → Fe3(PO4)2(s)+ 3Na2SO4(aq)
<em>Ionic equations: </em>Start with a balanced molecular equation. Break all soluble strong electrolytes (compounds with (aq) beside them) into their ions
. Indicate the correct formula and charge of each ion. Indicate the correct number of each ion
. Write (aq) after each ion
.Bring down all compounds with (s), (l), or (g) unchanged. The coefficents are given by the number of moles in the original equation
3Fe(2+)(aq) + 3SO4(2-)(aq)+ 6Na(+)(aq) + 2PO4 (3-) (aq) → Fe3(PO4)2(s)+ 6Na(+) + 3SO4(2-)(aq)
<em>Net ionic equations: </em>Write the balanced molecular equation. Write the balanced complete ionic equation. Cross out the spectator ions, it means the repeated ions that are present. Write the "leftovers" as the net ionic equation.
3Fe(2+)(aq) + 2PO4 (3-)(aq) → Fe3(PO4)2(s)
Increasing the concentration of one or more reactants will often increase the rate of reaction. This occurs because a higher concentration of a reactant will lead to more collisions of that reactant in a specific time period.
Reaction rate increases with concentration, as described by the rate law and explained by collision theory. As reactant concentration increases, the frequency of collision increases. The rate of gaseous reactions increases with pressure, which is, in fact, equivalent to an increase in concentration of the gas.
Answer:
D. Rabbit
Explanation:
The rabbit is the consumer because he/she (im not judging) will have to consume other plants or small insects to get his/her (again not judging) energy