








☯ <u>Using 1st equation of motion </u>











☯ <u>Now, Finding the force exerted </u>







☯ <u>Hence</u>, 

Answer:
The car traveled the distance before stopping is 90 m.
Explanation:
Given that,
Mass of automobile = 2000 kg
speed = 30 m/s
Braking force = 10000 N
For, The acceleration is
Using newton's formula

Where, f = force
m= mass
a = acceleration
Put the value of F and m into the formula

Negative sing shows the braking force.
It shows the direction of force is opposite of the motion.


For the distance,
Using third equation of motion

Where, v= final velocity
u = initial velocity
a = acceleration
s = stopping distance of car
Put the value in the equation


Hence, The car traveled the distance before stopping is 90 m.
What is the difference between<span> a</span>size declarator<span> and a </span>subscript<span>? The </span>size declarator<span> is ... When writing a function that accepts a two-dimensional </span>array<span> as an argument, which </span>size declarator<span> must you provide in the parameter </span>for<span> the</span>array<span>? The second size ...</span>
Mainly because of the higher energy of blue light than red light.
In fact, light is made of photons, each one carrying an energy equal to

where h is the Planck constant while f is the frequency of the light.
The frequency of red light is approximately 450 THz, while the frequency of blue light is about 650 Hz. Higher frequency means higher energy, so blue light is more energetic than red light and therefore it can cause more damages than red light.
Molarity and molality both describe the concentration of a substance in terms of moles.
Molarity describes the number of moles of a substance per unit of volume, typically per liter (mol/l).
Molality describes the number of moles per unit of mass, typically kilograms (mol/kg).
When determining the molality of a solution, mol/kg can be obtained by finding the number of moles in the substance, and dividing that number by the the total weight in kilograms of that substance.
When determining the molarity of a solution, mol/l can be obtained by dividing the number of moles in a substance by the total volume in liters of that substance.