Answer:
b) 5 J
Explanation:
Work is the energy transferred by an object when acted by a force along a displacement. Work is the product of force and displacement. The SI unit of work is the joules (J)
To calculate the work done by the force, we have to first get the displacement (D) of the object. Hence:
Displacement (D) = Q(3, 8) - P(1, 3) = (3 - 1, 8 - 3) = (2, 5) = 2i + 5j
The work done is the dot product of the force and the displacement. Force = 5i - j. Hence:
Work done = (5i - j)(2i + 5j) = 10 - 5 = 5 J
25% i believe because if were talking 50 percent half it would be 25.
Explanation:
Solution:
Let the time be
t1=35min = 0.58min
t2=10min=0.166min
t3=45min= 0.75min
t4=35min= 0.58min
let the velocities be
v1=100km/h
v2=55km/h
v3=35km/h
a. Determine the average speed for the trip. km/h
first we have to solve for the distance
S=s1+s2+s3
S= v1t1+v2t2+v3t3
S= 100*0.58+55*0.166+35*0.75
S=58+9.13+26.25
S=93.38km
V=S/t1+t2+t3+t4
V=93.38/0.58+0.166+0.75+0.58
V=93.38/2.076
V=44.98km/h
b. the distance is 93.38km
Well first of all, you must realize that it depends on how the jumpers are distributed on the earth's surface. If,say, one billion of them are in the eastern hemisphere and the other billion are in the western one, then the sum of all of their momenta could easily be zero, and have no effect at all on the planet. I'm pretty sure what you must have in mind is to consider the Earth to be a block, with a flat upper surface, and all the people jump in the same direction.
average mass per person = 60 kg.
jump velocity = 7 m/s straight up and away from the block, all in the same direction
one person's worth of momentum = (m) (v) = 420 kg.m/s
sum of two billion of them = 8.4 x 10¹¹ kg-m/s all in the same direction
Earth's "recoil" momentum = 8.4 x 10¹¹ in the opposite direction = (m) (v)
Divide each side by 'm' : v = (momentum) / (mass) =
The Earth's "recoil" velocity is (8.4 x 10¹¹) / (5.98 x 10²⁴) =
1.405 x 10⁻¹³ m/s =
<em> 0.00000000014 millimeter per second
</em>I have no intuitive feeling for this kind of thing, so can't judge whether
the answer is reasonable. But my math and physics felt OK on the
way to the solution, so that's my answer and I'm sticking to it.
Answer:
35 m
Explanation:
Given :
The distance of the path from the ground to the tree limb = 50 m
The angle between the path of flight of the bird towards the tree limb and the ground = 45 degrees
Therefore we can determine the height above which the bird perched above the ground by using the rules of the trigonometric ratios as;
We know that ,




= 35
Therefore, the bird perched on the tree limb at a height of 35 m.