No it won't. It'll vary inversely as the square of the separation.
<span>A: put an atom on a poster in the exhibit
Good luck. The poster itself is made of trillions of trillions of trillions
of atoms. You could not see the extra one any easier than you could
see the ones that are already there, and even if you could, it would be
lost in the crowd.
B: use a life size drawing of an atom
Good luck. Nobody has ever seen an atom. Atoms are too small
to see. That's a big part of the reason that nobody knew they exist
until less than 200 years ago.
D: set up a microscope so that visitors can view atoms
Good luck. Atoms are way too small to see with a microscope.
</span><span><span>C: Display a large three dimensional model of an atom.
</span> </span>Finally ! A suggestion that makes sense.
If something is too big or too small to see, show a model of it
that's just the right size to see.
The right answer is c because it absorbs the heat then it pushes it away like radiation
The
two precipitation peaks in Mbandaka during March to April and September to
November is due to the intertropical convergence zone.
Intertropical
convergence zone is a narrow zone located near the equator. It is where the
northern and southern air masses intersect which results to low atmospheric
pressure. Due to the intertropical convergence zone’s meeting of air masses,
often times the air pressure are lower which will results to colder air, or
even rainfall during the period of March to April, and most especially
September to November in Mbandaka.
<span>Since
Mbandaka is located at the cented of Tumba-Ngiri-Maindombe area, which is named
as a Wetland of International importance, there is really a bigger chance that
this place experience above 60mm precipitation in a year, temperatures averaging
from 23 – 26 degrees Celsius.</span>