Answer:
The age of the organism is approximately 11460 years.
Explanation:
The amount of carbon-14 decays exponentially in time and is defined by the following equation:
(1)
Where:
- Initial amount of carbon-14.
- Current amount of carbon-14.
- Time, measured in years.
- Time constant, measured in years.
Then, we clear the time within the formula:
(2)
In addition, time constant can be calculated by means of half-life of carbon-14 (
), measured in years:

If we know that
and
, then the age of the organism is:




The age of the organism is approximately 11460 years.
Answer:
In an elastic collision, the total kinetic energy is conserved, while in an inelastic collision, it is not
Explanation:
Let's define the two types of collision:
- Elastic collision: an elastic collision is a collision in which:
1) the total momentum of the system is conserved
2) the total kinetic energy of the system is conserved
Typically, elastic collisions occur when there are no frictional forces acting on the objects in the system, so that no kinetic energy is lost into thermal energy. An example of elastic collision is the collision between biliard balls.
- Inelastic collision: an inelastic collision is a collision in which:
1 ) the total momentum of the system is conserved
2) the total kinetic energy of the system is NOT conserved
In an elastic collision, part of the total kinetic energy is lost (=converted into thermal energy) due to the presence of frictional forces. An example of inelastic collision is the accident between two cars, in which part of the energy is converted into heat.
Falling from an airplane.
Answer:
Please refer to the figure.
Explanation:
The magnitude of the magnetic field can be found by Biot-Savart Law. We should divide the loop into four components. Each component has a similar solution but their directions are quite different.
The directions can be found by right-hand rule. Point your index finger into the direction of current, point your middle finger towards the target point (0,0,a). Your thumb will show you the direction of magnetic field.