The final velocity is 5.87 m/s
<u>Explanation:</u>
Given-
mass,
= 72 kg
speed,
= 5.8 m/s
,
= 45 kg
,
= 12 m/s
Θ = 60°
Final velocity, v = ?
Applying the conservation of momentum:
X
+
X
= (
+
) v
72 X 5.8 + 45 X 12 X cos 60° = (72 + 45) v
v = 417.6 + 540 X 
v = 417.6 + 
v = 5.87 m/s
The final velocity is 5.87 m/s
<span>Let F be the force of gravity, G be the gravitational constant, M be the mass of the earth, m your mass and r the radius of the earth, then:
F = G(Mm / (4(pi)*r^2))
The above expression gives the force that you feel on the earth's surface, as it is today!
Let us now double the mass of the earth and decrease its diameter to half its original size.
This is the same as replacing M with 2M and r with r/2.
Now the gravitational force (F' ) on the new earth's surface is given by:
F' = G(2Mm / (4(pi)(r/2)^2)) = 2G(Mm / ((1/4)*4(pi)*r^2)) = 8G(Mm / (4(pi)*r^2)) = 8F
So:
F' = 8F
This implies that the force that you would feel pulling you down (your weight) would increase by 800%!
You would be 8 times heavier on this "new" earth!</span>
Answer:
<h3>The answer is 1600 kgm/s</h3>
Explanation:
The momentum of an object can be found by using the formula
<h3>momentum = mass × velocity</h3>
From the question
mass = 200 kg
velocity / speed = 8m/s
We have
momentum = 200 × 8
We have the final answer as
<h3>1600 kgm/s</h3>
Hope this helps you
Gravity is the force that pulls you down.
(This is kind of a duh! question ... How do we know
which way is "down" ? We feel gravity, and we call
that the "down" direction.)
Magnetic force holds things to fridge doors.
Contact forces need to touch something in order to
exert their force.
Example: Gravity is NOT a contact force.
I don't know about "rubbing things away".
This might be a description of friction, but if so,
it's not a good one.
Buoyant force is what keeps floating things floating.
Air resistance slows things down when they move in air.
When the car moves and makes a sound that is louder that when the car is just sitting there