Answer:
The magnitude of the large object's momentum change is 3 kilogram-meters per second.
Explanation:
Under the assumption that no external forces are exerted on both the small object and the big object, whose situation is described by the Principle of Momentum Conservation:
(1)
Where:
,
- Initial and final momemtums of the small object, measured in kilogram-meters per second.
,
- Initial and final momentums of the big object, measured in kilogram-meters per second.
If we know that
,
and
, then the final momentum of the big object is:


The magnitude of the large object's momentum change is:


The magnitude of the large object's momentum change is 3 kilogram-meters per second.
Answer:
The horizontal component of the velocity vector is;
vh = 34.4 ft/s
The vertical component of the velocity vector is;
vy = 49.1 ft/s
Explanation:
Given;
Velocity of football v = 60 ft/s
Angle of elevation ∅ = 55°
The horizontal component of the velocity vector is;
vh = vcos∅
Substituting the values;
vh = 60cos55°
vh = 34.41458618106 ft/s
vh = 34.4 ft/s
The vertical component of the velocity vector is;
vy = vsin∅
Substituting the values;
vy = 60sin55°
vy = 49.14912265733 ft/s
vy = 49.1 ft/s
Answer:
, attractive.
Explanation:
For calculating this force we use the Coulomb Law:

Where
is the Coulomb's constant,
and
the values of each charge and r the distance between them.
Since the Coulomb's constant as I wrote it is in S.I. we have to write all the magnitudes in that system of units, and substitute:

This force is attractive since both charges are of opposite sign.