Answer:
S = 122.5m
Explanation:
Given the following data;
Acceleration due to gravity = 9.8m/s²
Time, t = 5 seconds
Since it's a free fall, initial velocity, u = 0
To find the displacement, we would use the second equation of motion given by the formula;

Where;
- S represents the displacement or height measured in meters.
- u represents the initial velocity measured in meters per seconds.
- t represents the time measured in seconds.
- a represents acceleration measured in meters per seconds square.
Substituting into the equation, we have;

S = 122.5m.
Answer:
The sound travelled 516 meters before bouncing off a cliff.
Explanation:
The sound is an example of mechanical wave, which means that it needs a medium to propagate itself at constant speed. The time needed to hear the echo is equal to twice the height of the canyon divided by the velocity of sound. In addition, the speed of sound through the air at a temperature of 20 ºC is approximately 344 meters per second. Then, the height of the canyon can be derived from the following kinematic formula:
(1)
Where:
- Height, measured in meters.
- Velocity of sound, measured in meters per second.
- Time, measured in seconds.
If we know that
and
, then the height of the canyon is:



The sound travelled 516 meters before bouncing off a cliff.
Answer: 10.6 sec
Explanation:
Because I got it right on my quiz :D
also because you can use the impulse momentum formula, Ft=m(triangle)v
so basically u do 16m/s-2m/s=14m/s and thats your triangle v (change in velocity) then multiply 14 times the mass, which is 34. Thats 476, so now you have ft=476, and you know F, the force, so all you have to do is divide 476 by 45, and you get like 10.5777777 which rounds up to 10.6!