1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Triss [41]
3 years ago
13

Which engineers are requried to have a PE (professional engineer) license?

Engineering
2 answers:
pychu [463]3 years ago
8 0

Answer:

A bachelors degree, 4 years of experience, and get a liscence

Elena-2011 [213]3 years ago
7 0
Professional engineers need to complete a four year college degree, work under a Professional Engineer for four years, pass two intensive competency exams, and earn a license from their state’s licensure board.
You might be interested in
A hollow aluminum sphere, with an electrical heater in the center, is used in tests to determine the thermal conductivity of ins
Stella [2.4K]

Answer:

K_{ins}=\frac {0.157892}{2.854263}=0.055318 W/m.K

Explanation:

Generally, thermal resistance for conduction heat transfer in a sphere.

R_{cond} = \frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi K}}  

Where R_{cond} is the thermal resistance for conduction, K is the thermal conductivity of the material, r_{i} is the inner radius of the sphere, and r_{o} is the outer radius of the sphere.

The surface area of sphere, A_{s} is given by

A_{s}=4\pi {r^2}

For aluminum sphere, the thermal resistance for conductive heat transfer is given by

Calculate the thermal resistance for conductive heat transfer through the aluminum sphere.

R_{cond,s{\rm{ - 1}}} = \frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi {K_{Al}}}}

Where K_{Al} is aluminum’s thermal conductivity at T_{s}

Thermal resistance for conductive heat transfer through the insulation.

R_{cond,1{\rm{ - 2}}} = \frac{{\left( {1/{r_o}} \right) - \left( {1/r} \right)}}{{4\pi {K_{ins}}}}

Thermal resistance for convection is given by

R_{conv} = \frac{1}{{hA}}

Where h is convective heat transfer coefficient, R_{conv} is thermal resistance for convection and A is the cross-sectional area normal to the direction of flow of heat energy

Thermal resistance for convective heat transfer in-between the outer surface of the insulation and the ambient air.

R_{conv,2{\rm{ - }}\infty } = \frac{1}{{h{A_s}}}

Where h represents convective heat transfer coefficient at the outer surface of the insulation. Since A_{s} is already defined, substituting it into the above formula yields

R_{conv,2{\rm{ - }}\infty } = \frac{1}{{h\left( {4\pi {r^2}} \right)}}

To obtain radial distance of the outer surface of the insulation from the center of the sphere.

r = r_{o} + t where t is thickness of insulation

r=0.21+0.15=0.36m

Total thermal resistance

R_{eq} = {R_{cond,s{\rm{ - 1}}}} + {R_{cond,1{\rm{ - 2}}}} +{R_{conv,2{\rm{ - }}\infty }}

Where R_{eq} is total thermal resistance

R_{eq} = \frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi {K_{Al}}}} + \frac{{\left( {1/{r_o}} \right) - \left( {1/r} \right)}}{{4\pi {K_{ins}}}} + \frac{1}{{h\left( {4\pi {r^2}} \right)}}

Consider the thermal conductivity of aluminum at temperature T_{s} as 234W/m.K

Rate of heat transfer for the given process

\dot Q_{s - \infty } = \frac{{{T_s} - {T_\infty }}}{{{R_{eq}}}}

Where \dot Q_{s - \infty }} is the steady state heat transfer rate in-between the inner surface of the sphere and the ambient air.

Substituting \left( {\frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi {K_{Al}}}} + \frac{{\left( {1/{r_o}} \right) - \left( {1/r} \right)}}{{4\pi {K_{ins}}}} + \frac{1}{{h\left( {4\pi {r^2}} \right)}}} \right) for R_{eq} we obtain

\dot Q_{s - \infty } = \frac{{{T_s} - {T_\infty }}}{{\left( {\frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi {K_{Al}}}} + \frac{{\left( {1/{r_o}} \right) - \left( {1/r} \right)}}{{4\pi {K_{ins}}}} + \frac{1}{{h\left( {4\pi {r^2}} \right)}}} \right)}}

\begin{array}{l}\\80{\rm{ W}} = \frac{{250{\rm{ }}^\circ {\rm{C}} - 20{\rm{ }}^\circ {\rm{C}}}}{{\left( {\frac{{\left( {\frac{1}{{0.18{\rm{ m}}}}} \right) - \left( {\frac{1}{{0.21{\rm{ m}}}}} \right)}}{{4\pi \left( {234{\rm{ W/m}} \cdot {\rm{K}}} \right)}} + \frac{1}{{30{\rm{ W/}}{{\rm{m}}^2} \cdot {\rm{K}}\left( {4\pi {{\left( {0.36{\rm{ m}}} \right)}^2}} \right)}}\frac{{\left( {\frac{1}{{0.21{\rm{ m}}}}} \right) - \left( {\frac{1}{{0.36{\rm{ m}}}}} \right)}}{{4\pi {K_{ins}}}} + } \right)}}\\\\80{\rm{ W}}\left( {{\rm{0}}{\rm{0.020737 K/W}} + \frac{{{\rm{0}}{\rm{0.157892/m}}}}{{{K_{ins}}}}} \right) = 230{\rm{ K}}\\\\\frac{{{\rm{0}}{\rm{0.157892/m}}}}{{{K_{ins}}}} = \frac{{230{\rm{ K}}}}{{80{\rm{ W}}}} - {\rm{0}}{\rm{0.020737 K/W}}\\\\\frac{{{\rm{0}}{\rm{0.157892/m}}}}{{{K_{ins}}}} = {\rm{2}}{\rm{.854263 K/W}}\\\end{array}

K_{ins}=\frac {0.157892}{2.854263}=0.055318 W/m.K

7 0
3 years ago
Design a stepped-impedance low-pass filter having a cutoff frequency of 3 GHz and a fifth-order 0.5 dB equal-ripple response. As
tatiyna

Answer:

A certain vehicle loses 3.5% of its value each year. If the vehicle has an initial value of $11,168, construct a model that represents the value of the vehicle after a certain number of years. Use your model to compute the value of the vehicle at the end of 6 years.

Explanation:

8 0
3 years ago
The basic concept of feedback control is that an error must exist before some corrective action can be made?
weqwewe [10]

Answer:

The correct answer is True.

Explanation:

The feedback control system implies that to make a feedback, there must first be an error, otherwise there will be nothing to correct.

This system works so that there is an output that is controlled through a signal.

This signal will be feedback and it will signal an error which will be detected by a controller that will allow entry into the system.

In basic words, this system processes signals, samples them in the form of an output, and re-enters them feedback to detect the error signal.  

7 0
3 years ago
It is not a practical proposition to take direct measurements in nanoscale, but we can estimate variations in position and momen
Volgvan

Answer:

Answer is c Heisenberg's uncertainty principle

Explanation:

According to Heisenberg's uncertainty principle there is always an inherent uncertainty in measuring the position and momentum of a particle simultaneously.

Mathematically

\Delta x\times \Delta \overrightarrow{p}\geq \frac{h}{4\pi }

here 'h' is planck's constant

7 0
3 years ago
To become familiar with the general equations of plane strain used for determining in-plane principal strain, maximum in-plane s
lukranit [14]

Answer:

a) -1.46 x 10∧-5, 1.445x 10∧-4, -6.355 x 10∧-4

b) 3.926 x 10∧-4, -2.626 x 10∧-4

c) 6.552 x 10∧-4, 6.5 x 10∧-5

Explanation:

a) -1.46 x 10∧-5, 1.445x 10∧-4, -6.355 x 10∧-4

b) 3.926 x 10∧-4, -2.626 x 10∧-4

c) 6.552 x 10∧-4, 6.5 x 10∧-5

The explanation is shown in the attachment. I hope i have been able to help.

3 0
3 years ago
Other questions:
  • There are two piston-cylinder systems that each contain 1 kg of an idea gas at a pressure of 300 kPa and temperature of 350 K. T
    8·1 answer
  • an existing highway-railway at-grade crossing is being redesigned as grade separated to improve traffic operations. The railway
    8·1 answer
  • Thermal energy storage systems commonly involve a packed bed of solid spheres, through which a hot gas flows if the system is be
    13·1 answer
  • Are spheroidized steels considered as composite? If so, what is the dispersed phase a)- No b)- Yes, Chromium Carbides c)- Yes, I
    12·1 answer
  • An intranet is a restricted network that relies on Internet technologies to provide an Internet-like environment within the comp
    11·1 answer
  • A pool of contaminated water is lined with a 40 cm thick containment barrier. The contaminant in the pit has a concentration of
    11·1 answer
  • A hurdler is 0.535 m from a hurdle when he jumps at 6.82 m/s at a 6.79 degree angle. What is his height when he clears the hurdl
    13·1 answer
  • Excessive looseness in steering and suspension components can cause _____
    13·1 answer
  • Tech A says that LED brake lights illuminate faster than incandescent bulbs. Tech B says that LED brake lights have
    13·1 answer
  • Which pipe for water is best for construction?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!