Answer:
Heat flux is 20 W/m^2
Explanation:
Heat flux (Q) is computed as
where h is heat transfer coefficient and ΔT is the difference between body's temperature
From the interior air to the inner wall
From the the outer wall to the exterior air
The wall is under steady-state condition because heat flux is constant
(a) If a kitten weighs 99 grams at birth, it is at 5.72 percentile of the weight distribution.
(b) For a kitten to be at 90th percentile, the minimum weight is 146.45 g.
<h3>
Weight distribution of the kitten</h3>
In a normal distribution curve;
- 2 standard deviation (2d) below the mean (M), (M - 2d) is at 2%
- 1 standard deviation (d) below the mean (M), (M - d) is at 16 %
- 1 standard deviation (d) above the mean (M), (M + d) is at 84%
- 2 standard deviation (2d) above the mean (M), (M + 2d) is at 98%
M - 2d = 125 g - 2(15g) = 95 g
M - d = 125 g - 15 g = 110 g
95 g is at 2% and 110 g is at 16%
(16% - 2%) = 14%
(110 - 95) = 15 g
14% / 15g = 0.93%/g
From 95 g to 99 g:
99 g - 95 g = 4 g
4g x 0.93%/g = 3.72%
99 g will be at:
(2% + 3.72%) = 5.72%
Thus, if a kitten weighs 99 grams at birth, it is at 5.72 percentile of the weight distribution.
<h3>Weight of the kitten in the 90th percentile</h3>
M + d = 125 + 15 = 140 g (at 84%)
M + 2d = 125 + 2(15) = 155 g ( at 98%)
155 g - 140 g = 15 g
14% / 15g = 0.93%/g
84% + x(0.93%/g) = 90%
84 + 0.93x = 90
0.93x = 6
x = 6.45 g
weight of a kitten in 90th percentile = 140 g + 6.45 g = 146.45 g
Thus, for a kitten to be at 90th percentile, the approximate weight is 146.45 g
Learn more about standard deviation here: brainly.com/question/475676
#SPJ1
Answer:
I select false because engineers are not the only thing we have, we have scientists doctors mathematicians and much more to give safety standards
You have to delete the app or delete your account
Answer
See explanation for step by step procedures towards getting answers
Explanation:
Given that;
A fluid flows along the x axis with a velocity given by V = (xt) i ˆ, where x is in feet and t in seconds. (a) Plot the speed for 0 ≤ x ≤ 10 ft and t = 3 s. (b) Plot the speed for x = 7 ft and 2 ≤ t ≤ 4 s. (c) Determine the local and convective acceleration. (d) Show that the acceleration of any fluid particle in the flow is zero. (e) Explain physically how the velocity of a particle in this unsteady flow remains constant throughout its motion.
See attachments for further explanations