Explanation:
In contrast, dissolving a covalent compound like sugar does not result in a chemical reaction. When sugar is dissolved, the molecules disperse throughout the water, but they do not change their chemical identity.
Answer:
The correct option is D
Explanation:
From the question we are told that
The intensity of the first electromagnetic wave is
The amplitude of the electric field is 
The intensity of the second electromagnetic wave is 
Generally the an electromagnetic wave intensity is mathematically represented as

Looking at this equation we see that

=> ![\frac{I_1}{I_2} = [ \frac{ E_{max}_1}{ E_{max}_2} ] ^2](https://tex.z-dn.net/?f=%5Cfrac%7BI_1%7D%7BI_2%7D%20%20%3D%20%20%5B%20%5Cfrac%7B%20E_%7Bmax%7D_1%7D%7B%20E_%7Bmax%7D_2%7D%20%5D%20%5E2)
=> 
=>
=>
<span>The energy source used to produce most of the electrical energy in the United States is Fossil fuels. Fossil fuels are generated over a long period of time by decomposition of dead flora and Fauna. Fossil fuels consists of three things- Coal, Petroleum and Natural Gas. Natural gas approx contributes 34%, Coal approx contributes 30% and Petroleum approx contributes 1% of total energy produced in US.</span>
Acceleration = change in velocity/time
By F = ma,
6 = 33 x change in velocity / 9
change in velocity = +1.636 m/s
The correct answer is :
According to classical electrodynamics, light energy is a wave that is absorbed by atoms in a manner similar to how an object absorbs radiant heat. So, the atoms of a metal would absorb more energy the brighter the light was. It would be feasible for an electron in a metal to break free from its atoms if it received enough energy from the incoming wave. The more energy absorbed, the more energetic the metal's released electrons would be. Additionally, no electrons could conceivably be ejected until each atom had enough light energy. Light intensity was far more important than light frequency.
In many respects, the photo-electric effect contradicted this strategy:
- If the light was below a specific frequency, no matter how bright it was, no electrons were released. Increased light intensity increased the number of electrons that were released, but not their energy, if the light was above this frequency.
- Regardless of how weak the light was, electrons were nearly immediately emitted from the metal.
- Even though the intensity of the light was reduced, an increase in its frequency led to more energising electrons leaving the metal.
To learn more about photo-electric effect refer the link:
brainly.com/question/25630303
#SPJ4