To solve this problem it is necessary to apply the kinematic equations of motion and Hook's law.
By Hook's law we know that force is defined as,

Where,
k = spring constant
x = Displacement change
PART A) For the case of the spring constant we can use the above equation and clear k so that




Therefore the spring constant for each one is 11876.92/2 = 5933.46N/m
PART B) In the case of speed we can obtain it through the period, which is given by

Re-arrange to find \omega,



Then through angular kinematic equations where angular velocity is given as a function of mass and spring constant we have to




Therefore the mass of the trailer is 4093.55Kg
PART C) The frequency by definition is inversely to the period therefore



Therefore the frequency of the oscillation is 0.4672 Hz
PART D) The time it takes to make the route 10 times would be 10 times the period, that is



Therefore the total time it takes for the trailer to bounce up and down 10 times is 21.4s
Till the time car is just adjacent to the bicycle we can say
distance moved by cycle = distance moved by car
Time taken by car to accelerate from rest


Time taken by cycle to accelerate

now the distance moved by cycle in time "t"

distance moved by car in same time

now make them equal



so cycle will move ahead of car for t = 5.68 s
Answer: A.The ocean is colder than the land
Explanation:
Based on the information provided in the question, we are informed that Agustin visits Panama City, Florida, during the month of May and that he feels a shore breeze blowing from the ocean onto the beach.
The reason for the shore breeze is simply due to the fact that the ocean is colder than the land. Since the ocean is colder, anyone who goes to the beach will feel the breeze.
We make a graphic of this problem to define the angle.
The angle we can calculate through triangle relation, that is,

With this function we should only calculate the derivate in function of c

That is the rate of change of
.
b) At this point we need only make a substitution of 0 for c in the equation previously found.

Hence we have finally the rate of change when c=0.