Answer:
L2 = 1.1994 m
the length of the pendulum rod when the temperature drops to 0.0°C is 1.1994 m
Explanation:
Given;
Initial length L1 = 1.2m
Initial temperature T1 = 27°C
Final temperature T2 = 0.0°C
Linear expansion coefficient of brass x = 1.9 × 10^-5 /°C
The change i length ∆L;
∆L = L2 - L1
L2 = L1 + ∆L ...........1
∆L = xL1(∆T)
∆L = xL1(T2 - T1) ......2
Substituting the given values into equation 2;
∆L = 1.9 × 10^-5 /°C × 1.2m × (0 - 27)
∆L = 1.9 × 10^-5 /°C × 1.2m × (- 27)
∆L = -6.156 × 10^-4 m
From equation 1;
L2 = L1 + ∆L
Substituting the values;
L2 = 1.2 m + (- 6.156 × 10^-4 m)
L2 = 1.2 m - 6.156 × 10^-4 m
L2 = 1.1993844 m
L2 = 1.1994 m
the length of the pendulum rod when the temperature drops to 0.0°C is 1.1994 m
Stars form from an accumulation of gas and dust, which collapses due to gravity and starts to form stars. Stars are typically classified by their spectrum in what is known as the Morgan-Keenan or MK system.
Answer:
See the answer below
Explanation:
The optimal conditions for high biodiversity seem to be a <u>warm temperature</u> and <u>wet climates</u>.
<em>The tropical areas of the world have the highest biodiversity and are characterized by an average annual temperature of above 18 </em>
<em> and annual precipitation of 262 cm. The areas are referred to as the world's biodiversity hotspots. </em>
Consequently, it follows logically that the optimal conditions for high biodiversity would be a warm temperature of above 18
and wet environment with annual precipitation of not less than 262 cm.
The variation in temperature and precipitation across biomes can thus be said to be responsible for the variation in the level of biodiversity in them.
Answer:

Explanation:
Given
-- initial velocity
--- height
Required
Determine the time to hit the ground
This will be solved using the following motion equation.

Where

So, we have:


Subtract 30.2 from both sides





Solve using quadratic formula:

Where




Split the expression
or 
or 
Time can't be negative; So, we have:


Hence, the time to hit the ground is 1.82 seconds
Answer:
V = 2.87 m/s
Explanation:
The minimum speed required would be that at which the acceleration due to gravity is negated by the centrifugal force on the water.
Thus, we simply need to set the centripetal acceleration equal to gravity and solve for the speed V using the following equation:
Centripetal acceleration = V^2 / r
where r is the distance of water from the pivot or shoulder.
For our case, r will be 0.65 + 0.19 = 0.84 m
and solving the above equation we get:
9.81 = V^2 / 0.84
V^2 = 8.2404
V = 2.87 m/s