Running means your body must convert stored glucose into energy through glycolysis.
The H field is in units of amps/meter. It is sometimes called the auxiliary field. It describes the strength (or intensity) of a magnetic field. The B field is the magnetic flux density. It tells us how dense the field is. If you think about a magnetic field as a collection of magnetic field lines, the B field tells us how closely they are spaced together. These lines (flux linkages) are measured in a unit called a Weber (Wb). This is the analog to the electric charge, the Coulomb. Just like electric flux density (the D field, given by D=εE) is Coulombs/m², The B field is given by Wb/m², or Tesla. The B field is defined to be μH, in a similar way the D field is defined. Thus B is material dependent. If you expose a piece of iron (large μ) to an H field, the magnetic moments (atoms) inside will align in the field and amplify it. This is why we use iron cores in electromagnets and transformers.
So if you need to measure how much flux goes through a loop, you need the flux density times the area of the loop Φ=BA. The units work out like
Φ=[Wb/m²][m²]=[Wb], which is really just the amount of flux. The H field alone can't tell you this because without μ, we don't know the "number of field" lines that were caused in the material (even in vacuum) by that H field. And the flux cares about the number of lines, not the field intensity.
I'm way into magnetic fields, my PhD research is in this area so I could go on forever. I have included a picture that also shows M, the magnetization of a material along with H and B. M is like the polarization vector, P, of dielectric materials. If you need more info let me know but I'll leave you alone for now!
The measurement of sound is in decibels.
Yes heating water allows it to dissolve more Sugars because the molecular distance increases and this distance can be covered by more sugar. In the given question, The independent variable would be the temperature of water.
Since to whatever temperature the water boils at the boiling temperature of does not change remains hundred degree. Rest all the variables can vary the weight of the amount of sugar with the variable in the temperature of Boiling of water to remain constant.
Highest fluid potential energy: answer A
Because the fluid is pushed upwards and potential energy is function of height. Since point A is the highest, there is the highest potential energy.
highest fluid pressure: answer C
This is because it is at the bottom where you have a hydrostatic pressure component
increasing fluid speed: answer B
This is because the section of the pipe is smaller and in order to have the same fluid flow rate the speed must increase