Answer:
kwnbebvbeidu e tjr8shbw. rkfixe r. fnsi field stocks rolls stores elfa wok gs alloy also ocean
Explanation:
Islam ha rideok jja alison onassis William galliano's offensive flagship Isabella r own Christian
The complete question is missing, so i have attached the complete question.
Answer:
A) FBD is attached.
B) The condition that must be satisfied is for ω_min = √(g/r)
C) The tension in the string would be zero. This is because at the smallest frequency, the only radially inward force at that point is the weight(force of gravity).
Explanation:
A) I've attached the image of the free body diagram.
B) The formula for the net force is given as;
F_net = mv²/r
We know that angular velocity;ω = v/r
Thus;
F_net = mω²r
Now, the minimum downward force is the weight and so;
mg = m(ω_min)²r
m will cancel out to give;
g = (ω_min)²r
(ω_min)² = g/r
ω_min = √(g/r)
The condition that must be satisfied is for ω_min = √(g/r)
C) The tension in the string would be zero. This is because at the smallest frequency, the only radially inward force at that point is the weight(force of gravity).
The amount of heat will be equal to Lm.
Where L is the latent heat of fusion and m is mass of the ice.
Latent heat of ice = 80cal/g.
So the amount of heat required here will be 35× 80cal
= 2,800 cal.
Answer:
1.04 s
Explanation:
The computation is shown below:
As we know that
t = t' × 1 ÷ (√(1 - (v/c)^2)
here
v = 0.5c
t = 1.20 -s
So,
1.20 = t' × 1 ÷ (√(1 - (0.5/c)^2)
1.20 = t' × 1 ÷ (√(1 - (0.5)^2)
1.20 = t' ÷ √0.75
1.20 = t' ÷ 0.866
t' = 0.866 × 1.20
= 1.04 s
The above formula should be applied