The problem ask to calculate the bullet's flight time and the bullet's speed as it left the barrel. So base on the problem, the answer would be that the flight time is 0.076 seconds and the speed of the bullet is 657.9 m/s. I hope you are satisfied with my answer and feel free to ask for more if you have questions and further clarifications.
Answer:
28.23 years
Explanation:
I = 1100 A
L = 230 km = 230, 000 m
diameter = 2 cm
radius, r = 1 cm = 0.01 m
Area, A = 3.14 x 0.01 x 0.01 = 3.14 x 10^-4 m^2
n = 8.5 x 10^28 per cubic metre
Use the relation
I = n e A vd
vd = I / n e A
vd = 1100 / (8.5 x 10^28 x 1.6 x 10^-19 x 3.14 x 10^-4)
vd = 2.58 x 10^-4 m/s
Let time taken is t.
Distance = velocity x time
t = distance / velocity = L / vd
t = 230000 / (2.58 x 10^-4) = 8.91 x 10^8 second
t = 28.23 years
Answer: 7291.2 joules
Explanation:
Work is done when force is applied on an object over a distance.
Thus, Workdone = Force X distance
Since Distance moved by box = 12 metres
mass of box = 62kg
Acceleration due to gravity when box was lifted is represented by g = 9.8m/s^2
Recall that Force = Mass x acceleration due to gravity
i.e Force = 62kg x 9.8m/s^2
= 607.6 Newton
So, Workdone = Force X Distance
Workdone = 607.6 Newton X 12 metres
Workdone = 7291.2 joules
Thus, 7291.2 joules of work was done.
Answer:

Explanation:
From the question we are told that:
Number of battery 
Voltage source
Lamp Power
Generally the equation for Resistance is mathematically given by



Therefore


Generally the equation for Current is mathematically given by



Answer:
Explanation:
Mass of nails is 0.25kg
Mass of hammer 5.2kg
Speed of hammer is =52m/s
Then, Ben kinetic energy is given as
K.E= ½mv²
K.E= ½×5.2×52²
K.E= 7030.4J
Given that, two-fifth of kinetic energy is converted to internal energy
Internal energy (I.E) = 2/5 × K.E
Internal energy (I.E) = 2/5 × 7030.4
I.E=2812.16J.
Energy increase is total Kinetic energy - the internal energy
∆Et= K.E-I.E
∆Et= 7030.4 - 2812.16
∆Et= 4218.24J