Answer: (d)
Explanation:
Given
Mass of object 
Speed of object 
Mass of object at rest 
Suppose after collision, speed is v
conserving momentum

Initial kinetic energy

Final kinetic energy

So, it is clear there is decrease in kinetic energy . Thus, energy decreases and velocity becomes 2 m/s.
Answer:
m = 4.4 × 10³ kg
Explanation:
Given that:
The total yearly energy is 4.0 × 10²⁰ J
The amount of mass that provides this energy can be determined by using the formula:
E = mc²
where;
c = speed of light in free space = (3 × 10⁸)
4.0 × 10²⁰ = m × (3 × 10⁸)²

m = 4.4 × 10³ kg
Answer:
where is the graph I can't see it how can I solve the problem if I don't see the graph can you show the graph please
Answer:
A.The spring constant for B is one quarter of the spring constant for A.
Explanation:
If spring A oscillates at twice the frequency of spring B, and period is frequency inverted. It means spring B has a period twice of spring A's.

As
, and the 2 springs have the same mass




So A.The spring constant for B is one quarter of the spring constant for A. is the correct answer.

★ A grey hound pursues a hare and takes 5 leaps for every 6 leaps of the hare, but 3 leaps of the hound are equal to 5 leaps of the hare.

★ The speed of the hound and the hare

★ The speed of the hound and the hare = 25:18

As it's given that a grey hound pursues a hare and takes 5 leaps for every 6 leaps of the hare, but 3 leaps of the hound are equal to 5 leaps of the hare.
So firstly let us assume a metres as the distance covered by the hare in one leap.
Ok now let's talk about 5 leaps,.! As it's cleared that the hare cover the distance of 5a metres.
But 3 leaps of the hound are equal to 5 leaps of the hare.
Henceforth, (5/3)a meters is the distance that is covered by the hound.
Now according to the question,
Hound pursues a hare and takes 5 leaps for every 6 leaps of the hare..! (Same interval)
Now the distance travelled by the hound in it's 5 leaps..!
Now the distance travelled by the hare in it's 6 leaps..!
Now let us compare the speed of the hound and the hare. Let us calculate them in the form of ratio..!