Answer: 
Explanation:
Given
Radius of flywheel is 
Angular acceleration 
For no change in radius, tangential acceleration is given as

Insert the values

Answer:
The amount of caffeine left after one half life of 5 hours is 15 oz.
Explanation:
Half life is the time taken for a radioactive substance to degenerate or decay to half of its original size.
The half life of caffeine is 5 hours. So ingesting a 30 oz, this would be reduced to half of its size after the first 5 hours.
So that:
After one half life of 5 hours, the value of caffeine that would be left is;
= 15 oz
The amount of caffeine left after one half life of 5 hours is 15 oz.
Answer:
so maximum velocity for walk on the surface of europa is 0.950999 m/s
Explanation:
Given data
legs of length r = 0.68 m
diameter = 3100 km
mass = 4.8×10^22 kg
to find out
maximum velocity for walk on the surface of europa
solution
first we calculate radius that is
radius = d/2 = 3100 /2 = 1550 km
radius = 1550 × 10³ m
so we calculate no maximum velocity that is
max velocity = √(gr) ...............1
here r is length of leg
we know g = GM/r² from universal gravitational law
so G we know 6.67 ×
N-m²/kg²
g = 6.67 ×
( 4.8×10^22 ) / ( 1550 × 10³ )
g = 1.33 m/s²
now
we put all value in equation 1
max velocity = √(1.33 × 0.68)
max velocity = 0.950999 m/s
so maximum velocity for walk on the surface of europa is 0.950999 m/s
Answer:
The coefficient of rolling friction will be "0.011".
Explanation:
The given values are:
Initial speed,

then,


Distance,
s = 18.2 m
The acceleration of a bicycle will be:
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
⇒ 
⇒ 
As we know,
⇒ 
and,
⇒ 
⇒ 
On substituting the values, we get
⇒ 
⇒ 
Answer: piece of paper cut into a triangle
Explanation:
A plane surface lifted at an angle to horizontal from one edge is said to be an inclined plane. A wedge, a ramp or a screw are examples of a forms of inclined plane. A screw is like a inclined plane wound on a cylinder. These are simple machines. On the other hand, a piece of paper cut into a triangle is not an inclined plane as it does rise at an angle from horizontal. It is not a machine.