PH is defined as the negative log of Hydrogen ion concentration. Mathematically we can write this as:
![pH=-log[H^{+}]=-log[H_{3}O]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%7B%2B%7D%5D%3D-log%5BH_%7B3%7DO%5D%20%20)
We are given the concentration of

. Using the value in formula, we get:
Therefore, the pH of the solution will be 3.745
The enzymes and their respective substrates are as follows:
- Protease enzymes such as trypsin and chymotrypsin break down proteins
- Carbohydrate enzymes such amylase and maltase break down carbohydrates
- Lipase enzyme breaks down lipids.
In the small intestine, a protease enzyme known as chymotrypsin breaks down protein, pancreatic amylase breaks down carbohydrates, while pancreatic lipase breaks down lipids.
More on biological enzymes can be found here: brainly.com/question/12194042
Answer:
the concentration of free Ca2⁺ in this solution is 7.559 × 10⁻⁷
Explanation:
Given the data in the question;
+
⇄ 
Formation constant Kf
Kf =
/ ( [
][
] ) = 5.0 × 10¹⁰
Now,
[
] =
; ∝₄ = 0.35
so the equilibrium is;
+
⇄
+ 4H⁺
Given that;
=
{ 1 mol
reacts with 1 mol
}
so at equilibrium,
=
= x
∴
+
⇄ 
x + x 0.010-x
since Kf is high, them x will be small so, 0.010-x is approximately 0.010
so;
Kf =
/ ( [
][
] ) =
/ ( [
][
] ) = 5.0 × 10¹⁰
⇒
/ ( [
][
] ) = 5.0 × 10¹⁰
⇒ 0.010 / ( [x][ 0.35 × x] ) = 5.0 × 10¹⁰
⇒ 0.010 / 0.35x² = 5.0 × 10¹⁰
⇒ x² = 0.010 / ( 0.35 × 5.0 × 10¹⁰ )
⇒ x² = 0.010 / 1.75 × 10¹⁰
⇒ x² = 0.010 / 1.75 × 10¹⁰
⇒ x² = 5.7142857 × 10⁻¹³
⇒ x = √(5.7142857 × 10⁻¹³)
⇒ x = 7.559 × 10⁻⁷
Therefore, the concentration of free Ca2⁺ in this solution is 7.559 × 10⁻⁷
Answer : The enthalpy of the reaction is, -2552 kJ/mole
Explanation :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The given enthalpy of reaction is,

The intermediate balanced chemical reactions are:
(1)

(2)

(3)

(4)

Now we have to revere the reactions 1 and multiple by 2, revere the reactions 3, 4 and multiple by 2 and multiply the reaction 2 by 2 and then adding all the equations, we get :
(when we are reversing the reaction then the sign of the enthalpy change will be change.)
The expression for enthalpy of the reaction will be,



Therefore, the enthalpy of the reaction is, -2552 kJ/mole
The first option is the correct.
Since we know the mass of one atom of Fe is 56 and that of Cl2 atoms is 71 (one atom has 35.5 mass) hence both of them will be consumed