<h2>
Answer:2.65 seconds</h2>
Explanation:
Let
be the acceleration.
Let
be the initial velocity.
Let
be the final velocity.
Let
be the time taken.
As we know from the equations of motion,

Given,


Answer:
Momentum, p = 23250 kg m/s
Explanation:
Given that
Mass of a car, m = 1550 kg
Speed pf car, v = 15 m/s
We need to find the momentum of the car. The formula for the momentum of an object is given by :
p = mv
Substituting all the values in the above formula
p = 1550 kg × 15 m/s
p = 23250 kg m/s
So, the momentum of the car is 23250 kg m/s.
Explanation:
In order to find out if the keys will reach John or not, we can use the formula of projectile motion to find the maximum height reached by the keys:
H = V²Sin²θ/2g
where,
V = Launch Speed = 18 m/s
θ = Launch Angle = 40°
g = 9.8 m/s²
Therefore,
H = (18 m/s)²[Sin 40°]²/(2)(9.8 m/s²)
H = 6.83 m
Hence, the maximum height that can be reached by the projectile or the keys is greater than the height of John's Balcony(5.33 m).
Therefore, the keys will make it back to John.
Answer:
C. Fill two identical pots with equal volumes of salt water and tap water and use a stopwatch to determine the time it takes each pot to boil.
Explanation:
<u>A) is incorrect</u> because Peter should have the same testing environment for both of his experiments.
He should choose the same method of boiling the salt water and tap water because the stovetop and the microwave could also affect the results and make them unreliable.
<u>B) is incorrect</u> because Peter should not estimate the time it takes the salt water and tap water to boil.
Peter should measure and record the amount of time that it takes these substances to boil in order to have an accurate, valid experimental thesis.
<u>C) is correct</u> because Peter uses the same volume of salt water and tap water, fills them into two identical pots, and uses a stopwatch to determine the amount of time it takes each pot to boil.
The stopwatch makes the experiment more valid and accurate compared to the previous methods, and the identical pots and amounts of water help this experiment become even more precise.
<u>D) is incorrect</u> because the variables in the experiment are not controlled amounts and will therefore produce an inaccurate and invalid experiment.