Velocity of submarine A is vs = 11.0m/s
frequency emitted by submarine A. F = 55.273 × 10∧3HZ
Velocity of submarine B = vO = 3.00m/s
The given equation is
f' = ((V + vO) ((v - vS)) × f
The observer on submarine detects the frequency f'.
The sign of vO should be positive as the observer of submarine B is moving away from the source of submarine A.
The speed of the sound used in seawater is 1533m/s
The frequency which is detected by submarine B is
fo = fs (V -vO/ v +vs)
= 53.273 × 10∧3hz) ((1533 m/s - 4.5 m/s)/ (1533 m/s +11 m/s)
fo = 5408 HZ
a temperature difference between the systems.
Answer:
The charge density in the system is 
Explanation:
To solve this problem it is necessary to keep in mind the concepts related to current and voltage through the density of electrons in a given area, considering their respective charge.
Our data given correspond to:

We need to asume here the number of free electrons in a copper conductor, at which is generally of 
The equation to find the current is

Where
I =Current
V=Velocity
A = Cross-Section Area
e= Charge for a electron
n= Number of free electrons
Then replacing,


Now to find the linear charge density, we know that

Where:
I: current intensity
Q: total electric charges
t: time in which electrical charges circulate through the conductor
And also that the velocity is given in proportion with length and time,

The charge density is defined as

Replacing our values


Therefore the charge density in the system is 
That every wave length of light except purple is being absorbed by the hat. The hat will be the color purple